Subexponential Performance from Generic Group Algorithms

Andrew V. Sutherland

Massachusetts Institute of Technology
April 3, 2008

A familiar example

Binary exponentiation

Given $\alpha \in G$ and $k \in \mathbb{Z}, \operatorname{Exp}(\alpha, k)$ computes α^{k} :
(1) If $k=0$ return 1_{G}.
(2) If $k<0$ return $\operatorname{Exp}\left(\alpha^{-1},-k\right)$.
(3) Set $\beta \leftarrow \operatorname{Exp}(\alpha,\lfloor k / 2\rfloor)$.
(4) If k is even return $\beta \beta$, otherwise return $\beta \beta \alpha$.

Generic groups

Computational model for finite groups

- Black-box group operation, inverse, and identity.
- Elements uniquely identified by (opaque) bit strings.
- Uniformly distributed random group elements available.
- Complexity measured by group operations.

Discrete logarithms in a generic group

Easy problem

Given $\alpha \in G$ and $1 \leq k \leq N=|\alpha|$, compute

$$
\beta=\alpha^{k}
$$

Uses $O(\log N)$ group operations, outputs $\beta \in\langle\alpha\rangle$.

Hard problem

Given $\beta \in\langle\alpha\rangle$, compute the least $k>0$ such that $\alpha^{k}=\beta$,

$$
k=\log _{\alpha} \beta
$$

Requires $\Omega(\sqrt{P})$ group operations (Shoup 1997).

DL-based cryptography

Cryptographic requirements

P should be at least 2^{160}, preferably 2^{200} or more. Ideally, $N=P$ or $N=c P$ for some small cofactor c.

Pohlig-Hellman attack

Suppose $|\alpha|=N=2 \cdot 3 \cdot 5 \cdots 997>2^{1000}$. Let $m=N / \ell$.
To compute $k=\log _{\alpha} \beta$, modulo ℓ, note that

$$
\beta^{m}=\left(\alpha^{k}\right)^{m}=\left(\alpha^{m}\right)^{k}
$$

Therefore $k \equiv \log _{\alpha^{m}} \beta^{m} \bmod \ell$.

Hyperelliptic curves

Quick primer

- Projective curve C given by $y^{2}=f(x)$ over \mathbb{F}_{p} (odd char.). $\operatorname{deg} f(x)=2 g+1$, where g is the genus of C.
- The case $g=1$ is an elliptic curve: $y^{2}=x^{3}+a x+b$.
- The Jacobian $J(C)$ is a finite abelian group.
- An element of $J(C)$ corresponds to g points on C. For $g=1$, we have $J(C) \cong C$.
- $\# J(C) \sim p^{g}$, specifically $\left|\# J(C)-p^{g}\right|=O\left(p^{g-1 / 2}\right)$.

Hyperelliptic curve cryptography

Advantages

- As fast or faster than elliptic curves.
- Small key size, and even smaller field size.
- Well suited to embedded applications: mobile phones, PDAs, stored value cards, secure ID, remote keys,

Implementation issues

- Security (and performance) dictate $g=2$ or 3 .
- Field size should be a power of 2 , or prime.
$p=2^{89}-1$ and $p=2^{61}-1$ work nicely.
- Group order $\# J(C)$ should be prime or near-prime.

The problem

How do we compute $\# J(C)$?

For binary fields, use p-adic methods, e.g. Kedlaya's algorithm.
For prime fields, no good solution is known.

- A polynomial-time algorithm exists, but is infeasible in practice (Pila 1990).
- Best results in genus 2 take one week to compute $\# J(C) \approx 2^{164}$ (Gaudry and Schost 2004).
- In genus 3 , best is $\# J(C) \approx 2^{150}$ (Harvey 2007).
- Both existing methods limited by (effectively) exponential space requirements. Difficult to scale.

How do we compute $|G|$ for abelian G ?

The group exponent $\lambda(G)$

$\lambda(G)$ is the least common multiple of $|\alpha|$ over $\alpha \in G$. A prime p divides $|G|$ if and only if p divides $\lambda(G)$.

Computing the structure of G

Decompose G as a product of cyclic groups:
(1) Compute $|\alpha|$ for random $\alpha \in G$ to obtain $\lambda(G)$.
(2) Using $\lambda(G)$ to compute in p-Sylow subgroups H_{p}, compute a basis for each H_{p} via discrete logarithms.
Given bounds on $|G|$, the expected complexity is dominated by the time to compute the first $|\alpha|$ (PhD thesis, 2007).

How do we compute $|\alpha|$?

Generic method 1: Shanks' baby-step giant-step

Pick B, compute $\beta=\alpha^{-B}$, and then

$$
\alpha, \alpha^{2}, \alpha^{3}, \ldots, \alpha^{B} ; \quad \beta, \beta^{2}, \beta^{3}, \ldots, \beta^{B} .
$$

Provided $|\alpha|<=B^{2}$, then some $\alpha^{j}=\beta^{k}$ and $\alpha^{j+k B}=1_{G}$. $O(\sqrt{N})$ group operations* (slow!).

Generic method 2: Pollard's p-1 method

Let M be the product of all maximal prime powers $q<B$.
If $\alpha^{M}=1_{G}$, then we can compute $|\alpha|$ in $O(B)$ time.
$O(N)$ group operations in the worst case (slower!).

Smooth and semismooth probabilities

Method 2 is fast if $|\alpha|$ is " B-smooth"

Suppose $|\alpha|$ is a random integer in $[1, N]$ and let $B=N^{1 / u}$. With probability $\rho(u)=u^{-u+o(1)}$, compute $|\alpha|$ in time $O(B)$. Pick $u=\sqrt{2 \log N / \log \log N}$ to obtain $L(1 / 2,1 / \sqrt{2})$.

Method $2+1$ is fast if $|\alpha|$ is " $\left(B^{2}, B\right)$-semismooth"
With probability $\sigma(u)$, compute $|\alpha|$ in time $O(B)$.
$\sigma(u)=O(\rho(u))$, but about 100 times bigger for moderate u.

A probabilistic paradox

Good news

Let $N \approx 2^{160}$ and $u=6.4$.
Then $\sigma(u) \approx 1 / 2640$ and $O(B) \approx 71$ million gops.
For hyperelliptic curves, this is under thirty seconds.

Bad news

Worst case: over one trillion years.
Random case: over ten billion years.

Optimistic/pessimistic strategy

Give up after $O(B)$ gops and try a different C.
Expected time to first success is less than a day.

What good is it?

Apparently useless

The only cases where we can compute $\# J(C)$ are totally unsuitable for cryptographic use.

The group order contains no large prime factors.

But with a slight twist...

\tilde{C} is the curve $y^{2}=\tau f(x)$, where τ is not square in \mathbb{F}_{p}. $\# J(\tilde{C})$ may be prime even though $\# J(C)$ is smooth.

The zeta function of a curve

The zeta function of C over \mathbb{F}_{p} is given by

$$
Z(T)=\exp \left(\sum \frac{N_{k}}{k} T^{k}\right)=\frac{P(T)}{(1-T)(1-p T)}
$$

where N_{k} counts points on C over $\mathbb{F}_{p^{k}}$. In genus 2,

$$
P(T)=p^{2} T^{4}+p a_{1} T^{3}+a_{2} T^{2}+a_{1} T+1 .
$$

The polynomial $P(T)$ has the useful property that

$$
P(1)=\# J(C) ; \quad P(-1)=\# J(\tilde{C})
$$

Using known bounds on the integers a_{1} and a_{2}, we can deduce $P(T)$ from $\# J(C)$ using group operations in $J(\tilde{C})$.

The algorithm

Finding a cryptographically suitable Jacobian

Given N, select a suitable u, and let $B=N^{1 / u}$.
For each curve C in a family with $\# J(C) \approx N$:
(1) Attempt to compute $\# J(\tilde{C})$ using $O(B)$ gops.
(2) When successful, determine $P(T)$ from $P(-1)=\# J(\tilde{C})$. Then compute $\# J(C)=P(1)$.
(3) Continue until $\# J(C)$ is prime or near-prime.

Selecting a suitable u

Computing $\sigma(u)$.

The semismooth probability function $\mathcal{G}(\alpha, \beta)$ may be used to determine $\sigma(u)=G(1 / u, 2 / u)$ (Bach-Peralta 1996).
$N=\# J(C)$ is more likely to have small factors than $N \in \mathbb{Z}$.
Let C be a "typical" curve of genus 2 over \mathbb{F}_{p}. If $N=\# J(C)$

$$
\operatorname{Pr}[\ell \mid N]=\frac{1}{\ell}+\frac{1}{\ell^{2}}+O\left(1 / \ell^{3}\right)
$$

for primes $\ell \ll p$ (Achter-Holden 2003).

Performance

Complexity

Expected time is $L(1 / 2, \sqrt{2})$ group operations.
Space complexity is $L(1 / 2,1 / \sqrt{2})$, not a limiting factor.

Parellelization

Well suited to distributed computation:
(1) Each attempt to compute $\# J(\tilde{C})$ is independent.
(2) Minimal coordination required.
(3) Fault tolerant.

Examples

Genus 2, $p=2^{89}-1$
$y^{2}=x^{5}+x+202214: \quad \# J(C)=$
$180 \times 2128466028980222265110760419187916380742710181533203$.
Group size is 178 bits, with a 171-bit prime factor.

Genus 3, $p=2^{61}-1$
$y^{2}=x^{7}+3 x^{5}+x^{4}+4 x^{3}+x^{2}+5 x+84538: \quad \# J(C)=$
$14739408 \times 831781325652289358544190241299568732364985371373$.
Group size is 183 bits, with a 166-bit prime factor.

Trace zero varieties

Definition

Let ϕ denote the Frobenius endomorphism on $J\left(C / \mathbb{F}_{p^{k}}\right)$.
The kernel of the trace endomorphism

$$
1+\phi+\phi^{2}+\cdots+\phi^{k-1}
$$

is a subgroup $T_{k}(C)$ of $J\left(C / \mathbb{F}_{p^{k}}\right)$, the trace zero variety.
Provided k does not divide $\# J(C)$, we have

$$
\# T_{k}(C)=\# J\left(C / \mathbb{F}_{p^{k}}\right) / \# J(C) \approx p^{(k-1) g} .
$$

Trace zero varieties

Implementation

- For cryptographic use, $k=3, g=2$, and $\# T_{3}(C) \approx p^{4}$.
- Must be 20% larger to achieve equivalent security. This still permits much smaller p.
- Performance is often superior to a comparable Jacobian.

Results

- The time required to find $T_{3}(C)$ with security equivalent to a 200-bit Jacobian is under an hour.
- Several examples have effective security over 300 bits.
- The algorithm can readily find C for which $\# T_{3}(C)$ and $\# T_{3}(\tilde{C})$ are both prime.

The bigger picture

Generic subexponential algorithm

Any problem reducible to computing the order of one of a family of generic abelian groups can be solved in subexponential time.
*assuming suitably distributed group orders.

A generic approach to searching for Jacobians, to appear in Math. Comp. See http://math.mit.edu/~drew for examples and references.

