Subexponential Performance from Generic Group Algorithms

Andrew V. Sutherland

Massachusetts Institute of Technology

April 3, 2008

A familiar example

Binary exponentiation

Given $\alpha \in G$ and $k \in \mathbb{Z}$, $Exp(\alpha, k)$ computes α^k :

- If k = 0 return 1_G .
- **2** If k < 0 return $Exp(\alpha^{-1}, -k)$.
- **③** Set β ← *Exp*(α , $\lfloor k/2 \rfloor$).
- If *k* is even return $\beta\beta$, otherwise return $\beta\beta\alpha$.

Generic groups

Computational model for finite groups

- Black-box group operation, inverse, and identity.
- Elements uniquely identified by (opaque) bit strings.
- Uniformly distributed random group elements available.
- Complexity measured by group operations.

Discrete logarithms in a generic group

Easy problem

Given $\alpha \in G$ and $1 \leq k \leq N = |\alpha|$, compute

$$\beta = \alpha^k.$$

Uses $O(\log N)$ group operations, outputs $\beta \in \langle \alpha \rangle$.

Hard problem

Given $\beta \in \langle \alpha \rangle$, compute the least k > 0 such that $\alpha^k = \beta$,

$$k = \log_{\alpha} \beta.$$

Requires $\Omega(\sqrt{P})$ group operations (Shoup 1997).

DL-based cryptography

Cryptographic requirements

P should be at least 2^{160} , preferably 2^{200} or more. Ideally, N = P or N = cP for some small cofactor *c*.

Pohlig-Hellman attack

Suppose $|\alpha| = N = 2 \cdot 3 \cdot 5 \cdots 997 > 2^{1000}$. Let $m = N/\ell$. To compute $k = \log_{\alpha} \beta$, modulo ℓ , note that

$$\beta^m = (\alpha^k)^m = (\alpha^m)^k.$$

Therefore $k \equiv \log_{\alpha^m} \beta^m \mod \ell$.

Hyperelliptic curves

Quick primer

- Projective curve C given by y² = f(x) over F_p (odd char.).
 deg f(x) = 2g + 1, where g is the genus of C.
- The case g = 1 is an elliptic curve: $y^2 = x^3 + ax + b$.
- The Jacobian J(C) is a finite abelian group.
- An element of *J*(*C*) corresponds to *g* points on *C*.
 For *g* = 1, we have *J*(*C*) ≅ *C*.
- $\#J(C) \sim p^g$, specifically $|\#J(C) p^g| = O(p^{g-1/2})$.

Hyperelliptic curve cryptography

Advantages

- As fast or faster than elliptic curves.
- Small key size, and even smaller field size.
- Well suited to embedded applications: mobile phones, PDAs, stored value cards, secure ID, remote keys,

Implementation issues

- Security (and performance) dictate g = 2 or 3.
- Field size should be a power of 2, or prime. $p = 2^{89} - 1$ and $p = 2^{61} - 1$ work nicely.
- Group order #J(C) should be prime or near-prime.

The problem

How do we compute #J(C)?

For binary fields, use *p*-adic methods, e.g. Kedlaya's algorithm. For prime fields, **no good solution is known**.

- A polynomial-time algorithm exists, but is infeasible in practice (Pila 1990).
- Best results in genus 2 take one week to compute $\#J(C) \approx 2^{164}$ (Gaudry and Schost 2004).
- In genus 3, best is $\#J(C) \approx 2^{150}$ (Harvey 2007).
- Both existing methods limited by (effectively) exponential space requirements. Difficult to scale.

How do we compute |G| for abelian G?

The group exponent $\lambda(G)$

 $\lambda(G)$ is the least common multiple of $|\alpha|$ over $\alpha \in G$. A prime *p* divides |G| if and only if *p* divides $\lambda(G)$.

Computing the structure of G

Decompose *G* as a product of cyclic groups:

- Compute $|\alpha|$ for random $\alpha \in G$ to obtain $\lambda(G)$.
- 2 Using $\lambda(G)$ to compute in *p*-Sylow subgroups H_p , compute a basis for each H_p via discrete logarithms.

Given bounds on |G|, the expected complexity is dominated by the time to compute the first $|\alpha|$ (PhD thesis, 2007).

How do we compute $|\alpha|$?

Generic method 1: Shanks' baby-step giant-step

Pick *B*, compute $\beta = \alpha^{-B}$, and then

$$\alpha, \alpha^2, \alpha^3, \dots, \alpha^B; \qquad \beta, \beta^2, \beta^3, \dots, \beta^B.$$

Provided $|\alpha| <= B^2$, then some $\alpha^j = \beta^k$ and $\alpha^{j+kB} = \mathbf{1}_G$.

 $O(\sqrt{N})$ group operations* (slow!).

Generic method 2: Pollard's p-1 method

Let *M* be the product of all maximal prime powers q < B. If $\alpha^M = 1_G$, then we can compute $|\alpha|$ in O(B) time.

O(N) group operations in the worst case (slower!).

Smooth and semismooth probabilities

Method 2 is fast if $|\alpha|$ is "*B*-smooth"

Suppose $|\alpha|$ is a random integer in [1, *N*] and let $B = N^{1/u}$. With probability $\rho(u) = u^{-u+o(1)}$, compute $|\alpha|$ in time O(B).

Pick $u = \sqrt{2 \log N / \log \log N}$ to obtain $L(1/2, 1/\sqrt{2})$.

Method 2+1 is fast if $|\alpha|$ is " (B^2, B) -semismooth"

With probability $\sigma(u)$, compute $|\alpha|$ in time O(B). $\sigma(u) = O(\rho(u))$, but about 100 times bigger for moderate u.

A probabilistic paradox

Good news

Let $N \approx 2^{160}$ and u = 6.4. Then $\sigma(u) \approx 1/2640$ and $O(B) \approx 71$ million gops. For hyperelliptic curves, this is under thirty seconds.

Bad news

Worst case: over one trillion years. Random case: over ten billion years.

Optimistic/pessimistic strategy

Give up after O(B) gops and try a different *C*. Expected time to first success is less than a day.

What good is it?

Apparently useless

The only cases where we can compute #J(C) are totally unsuitable for cryptographic use.

The group order contains no large prime factors.

But with a slight twist...

 \tilde{C} is the curve $y^2 = \tau f(x)$, where τ is not square in \mathbb{F}_p . # $J(\tilde{C})$ may be prime even though #J(C) is smooth.

The zeta function of a curve

The zeta function of *C* over \mathbb{F}_p is given by

$$Z(T) = \exp\left(\sum \frac{N_k}{k}T^k\right) = \frac{P(T)}{(1-T)(1-\rho T)},$$

where N_k counts points on *C* over \mathbb{F}_{p^k} . In genus 2,

$$P(T) = p^2 T^4 + pa_1 T^3 + a_2 T^2 + a_1 T + 1.$$

The polynomial P(T) has the useful property that

$$P(1) = \#J(C);$$
 $P(-1) = \#J(\tilde{C}).$

Using known bounds on the integers a_1 and a_2 , we can deduce P(T) from #J(C) using group operations in $J(\tilde{C})$.

The algorithm

Finding a cryptographically suitable Jacobian

Given *N*, select a suitable *u*, and let $B = N^{1/u}$. For each curve *C* in a family with $\#J(C) \approx N$:

- Attempt to compute $#J(\tilde{C})$ using O(B) gops.
- When successful, determine P(T) from $P(-1) = #J(\tilde{C})$. Then compute #J(C) = P(1).
- Sontinue until #J(C) is prime or near-prime.

Selecting a suitable *u*

Computing $\sigma(u)$.

The semismooth probability function $G(\alpha, \beta)$ may be used to determine $\sigma(u) = G(1/u, 2/u)$ (Bach-Peralta 1996).

N = #J(C) is more likely to have small factors than $N \in \mathbb{Z}$.

Let *C* be a "typical" curve of genus 2 over \mathbb{F}_p . If N = #J(C)

$$\Pr[\ell|N] = \frac{1}{\ell} + \frac{1}{\ell^2} + O\left(1/\ell^3\right)$$

for primes $\ell \ll p$ (Achter-Holden 2003).

Performance

Complexity

Expected time is $L(1/2, \sqrt{2})$ group operations. Space complexity is $L(1/2, 1/\sqrt{2})$, not a limiting factor.

Parellelization

Well suited to distributed computation:

- Each attempt to compute $#J(\tilde{C})$ is independent.
- 2 Minimal coordination required.
- Fault tolerant.

Examples

Genus 2,
$$p = 2^{89} - 1$$

 $y^2 = x^5 + x + 202214$: #J(C) =

 $180 \times 2128466028980222265110760419187916380742710181533203.$

Group size is 178 bits, with a 171-bit prime factor.

Genus 3, $p = 2^{61} - 1$

$$y^2 = x^7 + 3x^5 + x^4 + 4x^3 + x^2 + 5x + 84538$$
: # $J(C) =$

 $14739408 \times 831781325652289358544190241299568732364985371373.$

Group size is 183 bits, with a 166-bit prime factor.

Trace zero varieties

Definition

Let ϕ denote the Frobenius endomorphism on $J(C/\mathbb{F}_{p^k})$. The kernel of the trace endomorphism

$$1 + \phi + \phi^2 + \dots + \phi^{k-1}$$

is a subgroup $T_k(C)$ of $J(C/\mathbb{F}_{p^k})$, the *trace zero variety*.

Provided k does not divide #J(C), we have

$$\#T_k(C) = \#J(C/\mathbb{F}_{p^k})/\#J(C) \approx p^{(k-1)g}$$

Trace zero varieties

Implementation

- For cryptographic use, k = 3, g = 2, and $\#T_3(C) \approx p^4$.
- Must be 20% larger to achieve equivalent security. This still permits much smaller *p*.
- Performance is often superior to a comparable Jacobian.

Results

- The time required to find $T_3(C)$ with security equivalent to a 200-bit Jacobian is under an hour.
- Several examples have effective security over 300 bits.
- The algorithm can readily find C for which #T₃(C) and #T₃(C̃) are both prime.

The bigger picture

Generic subexponential algorithm

Any problem reducible to computing the order of one of a family of generic abelian groups can be solved in subexponential time.

*assuming suitably distributed group orders.

A generic approach to searching for Jacobians, to appear in Math. Comp. See http://math.mit.edu/~drew for examples and references.