
Introduction Algorithm Results

Subexponential Performance from
Generic Group Algorithms

Andrew V. Sutherland

Massachusetts Institute of Technology

April 3, 2008

Introduction Algorithm Results

A familiar example

Binary exponentiation

Given α ∈ G and k ∈ Z, Exp(α, k) computes αk :

1 If k = 0 return 1G.

2 If k < 0 return Exp(α−1,−k).

3 Set β ← Exp(α, bk/2c).

4 If k is even return ββ, otherwise return ββα.

Introduction Algorithm Results

Generic groups

Computational model for finite groups

Black-box group operation, inverse, and identity.

Elements uniquely identified by (opaque) bit strings.

Uniformly distributed random group elements available.

Complexity measured by group operations.

Introduction Algorithm Results

Discrete logarithms in a generic group

Easy problem
Given α ∈ G and 1 ≤ k ≤ N = |α|, compute

β = αk .

Uses O(log N) group operations, outputs β ∈ 〈α〉.

Hard problem

Given β ∈ 〈α〉, compute the least k > 0 such that αk = β,

k = logα β.

Requires Ω(
√

P) group operations (Shoup 1997).

Introduction Algorithm Results

DL-based cryptography

Cryptographic requirements

P should be at least 2160, preferably 2200 or more.
Ideally, N = P or N = cP for some small cofactor c.

Pohlig-Hellman attack

Suppose |α| = N = 2 · 3 · 5 · · ·997 > 21000. Let m = N/`.
To compute k = logα β, modulo `, note that

βm = (αk)m = (αm)k .

Therefore k ≡ logαm βm mod `.

Introduction Algorithm Results

Hyperelliptic curves

Quick primer

Projective curve C given by y2 = f (x) over Fp (odd char.).
deg f (x) = 2g + 1, where g is the genus of C.

The case g = 1 is an elliptic curve: y2 = x3 + ax + b.

The Jacobian J(C) is a finite abelian group.

An element of J(C) corresponds to g points on C.
For g = 1, we have J(C) ∼= C.

#J(C) ∼ pg , specifically |#J(C)− pg | = O(pg−1/2).

Introduction Algorithm Results

Hyperelliptic curve cryptography

Advantages
As fast or faster than elliptic curves.
Small key size, and even smaller field size.
Well suited to embedded applications: mobile phones,
PDAs, stored value cards, secure ID, remote keys,

Implementation issues
Security (and performance) dictate g = 2 or 3.
Field size should be a power of 2, or prime.
p = 289 − 1 and p = 261 − 1 work nicely.
Group order #J(C) should be prime or near-prime.

Introduction Algorithm Results

The problem

How do we compute #J(C)?

For binary fields, use p-adic methods, e.g. Kedlaya’s algorithm.
For prime fields, no good solution is known.

A polynomial-time algorithm exists, but is infeasible in
practice (Pila 1990).

Best results in genus 2 take one week to compute
#J(C) ≈ 2164 (Gaudry and Schost 2004).

In genus 3, best is #J(C) ≈ 2150 (Harvey 2007).

Both existing methods limited by (effectively) exponential
space requirements. Difficult to scale.

Introduction Algorithm Results

How do we compute |G| for abelian G?

The group exponent λ(G)

λ(G) is the least common multiple of |α| over α ∈ G.
A prime p divides |G| if and only if p divides λ(G).

Computing the structure of G

Decompose G as a product of cyclic groups:
1 Compute |α| for random α ∈ G to obtain λ(G).
2 Using λ(G) to compute in p-Sylow subgroups Hp,

compute a basis for each Hp via discrete logarithms.
Given bounds on |G|, the expected complexity is dominated by
the time to compute the first |α| (PhD thesis, 2007).

Introduction Algorithm Results

How do we compute |α|?

Generic method 1: Shanks’ baby-step giant-step

Pick B, compute β = α−B, and then

α, α2, α3, . . . , αB; β, β2, β3, . . . , βB.

Provided |α| <= B2, then some αj = βk and αj+kB = 1G.

O(
√

N) group operations* (slow!).

Generic method 2: Pollard’s p − 1 method
Let M be the product of all maximal prime powers q < B.
If αM = 1G, then we can compute |α| in O(B) time.

O(N) group operations in the worst case (slower!).

Introduction Algorithm Results

Smooth and semismooth probabilities

Method 2 is fast if |α| is “B-smooth”

Suppose |α| is a random integer in [1, N] and let B = N1/u.
With probability ρ(u) = u−u+o(1), compute |α| in time O(B).

Pick u =
√

2 log N/ log log N to obtain L(1/2, 1/
√

2).

Method 2+1 is fast if |α| is “(B2, B)-semismooth”

With probability σ(u), compute |α| in time O(B).
σ(u) = O(ρ(u)), but about 100 times bigger for moderate u.

Introduction Algorithm Results

A probabilistic paradox

Good news

Let N ≈ 2160 and u = 6.4.
Then σ(u) ≈ 1/2640 and O(B) ≈ 71 million gops.
For hyperelliptic curves, this is under thirty seconds.

Bad news
Worst case: over one trillion years.
Random case: over ten billion years.

Optimistic/pessimistic strategy
Give up after O(B) gops and try a different C.
Expected time to first success is less than a day.

Introduction Algorithm Results

What good is it?

Apparently useless
The only cases where we can compute #J(C) are totally
unsuitable for cryptographic use.

The group order contains no large prime factors.

But with a slight twist...

C̃ is the curve y2 = τ f (x), where τ is not square in Fp.
#J(C̃) may be prime even though #J(C) is smooth.

Introduction Algorithm Results

The zeta function of a curve

The zeta function of C over Fp is given by

Z (T) = exp
(∑ Nk

k
T k

)
=

P(T)

(1− T)(1− pT)
,

where Nk counts points on C over Fpk . In genus 2,

P(T) = p2T 4 + pa1T 3 + a2T 2 + a1T + 1.

The polynomial P(T) has the useful property that

P(1) = #J(C); P(−1) = #J(C̃).

Using known bounds on the integers a1 and a2, we can
deduce P(T) from #J(C) using group operations in J(C̃).

Introduction Algorithm Results

The algorithm

Finding a cryptographically suitable Jacobian

Given N, select a suitable u, and let B = N1/u.
For each curve C in a family with #J(C) ≈ N:

1 Attempt to compute #J(C̃) using O(B) gops.

2 When successful, determine P(T) from P(−1) = #J(C̃).
Then compute #J(C) = P(1).

3 Continue until #J(C) is prime or near-prime.

Introduction Algorithm Results

Selecting a suitable u

Computing σ(u).

The semismooth probability function G(α, β) may be used to
determine σ(u) = G(1/u, 2/u) (Bach-Peralta 1996).

N = #J(C) is more likely to have small factors than N ∈ Z.

Let C be a ”typical” curve of genus 2 over Fp. If N = #J(C)

Pr[`|N] =
1
`

+
1
`2 + O

(
1/`3

)
for primes `� p (Achter-Holden 2003).

Introduction Algorithm Results

Performance

Complexity

Expected time is L(1/2,
√

2) group operations.
Space complexity is L(1/2, 1/

√
2), not a limiting factor.

Parellelization
Well suited to distributed computation:

1 Each attempt to compute #J(C̃) is independent.
2 Minimal coordination required.
3 Fault tolerant.

Introduction Algorithm Results

Examples

Genus 2, p = 289 − 1

y2 = x5 + x + 202214: #J(C) =

180× 2128466028980222265110760419187916380742710181533203.

Group size is 178 bits, with a 171-bit prime factor.

Genus 3, p = 261 − 1

y2 = x7 + 3x5 + x4 + 4x3 + x2 + 5x + 84538: #J(C) =

14739408× 831781325652289358544190241299568732364985371373.

Group size is 183 bits, with a 166-bit prime factor.

Introduction Algorithm Results

Trace zero varieties

Definition
Let φ denote the Frobenius endomorphism on J(C/Fpk).
The kernel of the trace endomorphism

1 + φ + φ2 + · · ·+ φk−1

is a subgroup Tk (C) of J(C/Fpk), the trace zero variety.

Provided k does not divide #J(C), we have

#Tk (C) = #J(C/Fpk)/#J(C) ≈ p(k−1)g .

Introduction Algorithm Results

Trace zero varieties

Implementation

For cryptographic use, k = 3, g = 2, and #T3(C) ≈ p4.
Must be 20% larger to achieve equivalent security.
This still permits much smaller p.
Performance is often superior to a comparable Jacobian.

Results
The time required to find T3(C) with security equivalent
to a 200-bit Jacobian is under an hour.
Several examples have effective security over 300 bits.
The algorithm can readily find C for which
#T3(C) and #T3(C̃) are both prime.

Introduction Algorithm Results

The bigger picture

Generic subexponential algorithm
Any problem reducible to computing the order of one of a family
of generic abelian groups can be solved in subexponential time.

*assuming suitably distributed group orders.

A generic approach to searching for Jacobians, to appear in Math. Comp.
See http://math.mit.edu/˜drew for examples and references.

http://math.mit.edu/~drew

	Introduction
	one

	Algorithm
	two

	Results
	three
	four

