Singular plane curves and symplectic 4-manifolds

Denis AUROUX

Symplectic manifolds

A symplectic structure on a smooth manifold is a 2-form ω such that $d\omega = 0$ and $\omega \wedge \cdots \wedge \omega$ is a volume form.

Example: \mathbb{R}^{2n} , $\omega_0 = \sum dx_i \wedge dy_i$.

(Darboux: every symplectic manifold is locally $\simeq (\mathbb{R}^{2n}, \omega_0)$, i.e. there are no local invariants).

Example: Riemann surfaces (Σ, vol_{Σ}) are symplectic. Example: Every Kähler manifold is symplectic. (includes all complex projective manifolds)

but the symplectic category is much larger. (Gompf 1994: $\forall G$ finitely presented group, $\exists (X^4, \omega)$ compact symplectic such that $\pi_1(X) = G$).

Symplectic manifolds are not always complex, but they are almost-complex, i.e. there exists $J \in \text{End}(TX)$ such that

 $J^2 = -\text{Id}, \quad g(u, v) := \omega(u, Jv)$ Riemannian metric.

At any given point (X, ω, J) looks like $(\mathbb{C}^n, \omega_0, i)$, but J is not integrable $(\nabla J \neq 0; \bar{\partial}^2 \neq 0)$. So there are no holomorphic functions (in particular no holomorphic local coordinates).

Symplectic topology

Typical problems:

– Which smooth manifolds admit symplectic structures ?

– Classify symplectic structures on a given smooth manifold. (Moser: if $[\omega] \in H^2(X, \mathbb{R})$ is fixed then all small deformations are trivial).

Why we care:

– Physics (classical mechanics; string theory; ...)

– Next step after understanding complex manifolds.

Some facts from complex geometry extend to symplectic manifolds; most don't.

A lot is known if dim X = 4. Core ingredient: structure of Seiberg-Witten / Gromov-Witten invariants of symplectic 4-manifolds (Taubes).

For dim $X \ge 6$, almost nothing is known. E.g., no known non-trivial obstruction to the symplecticity of compact 6manifolds (except $\exists [\omega] \in H^2(X, \mathbb{R})$ s.t. $[\omega]^{\wedge 3} \neq 0$).

Approximately holomorphic geometry

Idea:

Since we have almost-complex structures, even though there are no holomorphic sections and linear systems, we can work similarly with approximately holomorphic objects.

(Donaldson, ~ 1995)

Setup: (X^{2n}, ω) symplectic, compact

- $\frac{1}{2\pi}[\omega] \in H^2(X, \mathbb{Z})$ (not restrictive)
- J compatible with ω ; $g(.,.) = \omega(., J.)$
- L line bundle such that $c_1(L) = \frac{1}{2\pi}[\omega]$
- ∇^L , with curvature $-i\omega$; $\nabla^L = \partial^L + \bar{\partial}^L$. $\bar{\partial}^L s(v) = \frac{1}{2} (\nabla^L s(v) + i \nabla^L s(Jv)).$

If X Kähler, then L is a holomorphic ample line bundle, i.e. $L^{\otimes k}$ has many holomorphic sections for k large enough.

- \Rightarrow projective embeddings $X \hookrightarrow \mathbb{CP}^N$ (Kodaira).
- \Rightarrow smooth hypersurfaces (Bertini).
- \Rightarrow linear systems, projective maps.

Approximately holomorphic sections

X symplectic: J is not integrable \Rightarrow no holomorphic sections. However, local approximately holomorphic model:

A sequence of sections $s_k \in \Gamma(L^{\otimes k})$ is approx. holomorphic if $\sup |\bar{\partial}s_k| < C k^{-1/2} \sup |\partial s_k|$ (& higher order derivatives).

Goal: find approx. holom. sections with "generic" behavior.

Theorem 1. (Donaldson, 1996) If $k \gg 0$, then $L^{\otimes k}$ admits approx. holomorphic sections s_k whose zero sets W_k are smooth symplectic hypersurfaces.

Make up for loss of holomorphicity by achieving estimated transversality: require $|\partial s_k(x)| \gg \sup |\bar{\partial} s_k|$ along $s_k^{-1}(0)$. (uniform lower bound instead of just $\partial s_k(x) \neq 0$)

Also consider linear systems of ≥ 2 sections:

E.g., (s_0, s_1) well-chosen approx. hol. sections of $L^{\otimes k}$ $(k \gg 0)$ \Rightarrow symplectic Lefschetz pencils (Donaldson, 1999)

Branched covers of \mathbb{CP}^2

Theorem 2. (A., 2000) For $k \gg 0$, three suitable approx. hol. sections of $L^{\otimes k}$ define a map $X \to \mathbb{CP}^2$ with generic local models, canonical up to isotopy.

$$(X^4, \omega)$$
 symplectic, $s_0, s_1, s_2 \in \Gamma(L^{\otimes k})$ well-chosen
 $\Rightarrow f = (s_0 : s_1 : s_2) : X \to \mathbb{CP}^2.$

Local models near branch curve $R \subset X$:

- branched cover : $(x, y) \mapsto (x^2, y)$. R: x = 0 f(R): X = 0 $X^{2n} \to \mathbb{CP}^2: (z_1, \dots, z_n) \mapsto (z_1^2 + \dots + z_{n-1}^2, z_n)$ - $\operatorname{cusp}: (x, y) \mapsto (x^3 - xy, y)$. $R: y = 3x^2$ $f(R): 27X^2 = 4Y^3$ $X^{2n} \to \mathbb{CP}^2: (z_1, \dots, z_n) \mapsto (z_1^3 - z_1z_n + z_2^2 + \dots + z_{n-1}^2, z_n)$ $R \operatorname{cusp} the connected symplectic curve in <math>Y$

R smooth connected symplectic curve in X. D = f(R) symplectic, immersed except at the cusps. Generic singularities :

complex cusps; nodes (both orientations)

 \succ \checkmark \checkmark

Theorem $2 \Rightarrow$ up to cancellation of nodes, the topology of D is a symplectic invariant (if k large).

Topological invariants

Topological data for a branched cover of \mathbb{CP}^2 :

- 1) Branch curve: $D \subset \mathbb{CP}^2$ (up to isotopy and node cancellations).
- 2) Monodromy: $\theta : \pi_1(\mathbb{CP}^2 D) \to S_N \quad (N = \deg f)$ (surjective, maps γ_i to transpositions).
- D and θ determine (X, ω) up to symplectomorphism.

When dim X > 4, main difference: θ takes values in the mapping class group of the generic fiber.

This group is complicated; however there is a dimensional induction procedure \Rightarrow given (X^{2n}, ω) and $k \gg 0$ we get

- 1) (n-1) plane curves $D_n, D_{n-1}, \ldots, D_2 \subset \mathbb{CP}^2$.
- 2) $\theta_2: \pi_1(\mathbb{CP}^2 D_2) \to S_N.$

and these data determine (X, ω) up to symplectomorphism.

 \Rightarrow In principle it is enough to understand plane curves !

The topology of plane curves

(Moishezon-Teicher; Auroux-Katzarkov)

Perturbation $\Rightarrow D =$ singular branched cover of \mathbb{CP}^1 .

Monodromy = $\rho : \pi_1(\mathbb{C} - \{ \text{pts} \}) \to B_d$ (braid group)

 $\Rightarrow D$ is described by a "braid group factorization" (involving cusps, nodes, tangencies).

The braid factorization characterizes D completely.

Problem: once computed, cannot be compared.

 \Rightarrow more manageable (incomplete) invariant ?

Moishezon-Teicher: $\pi_1(\mathbb{CP}^2 - D)$ to study complex surfaces. $\pi_1(\mathbb{CP}^2 - D)$ is generated by "geometric generators" $(\gamma_i)_{1 \le i \le d}$; relations given by the braid factorization.

But: in the symplectic case, affected by node cancellations.

Stabilized fundamental groups

(Auroux-Donaldson-Katzarkov-Yotov: math.GT/0203183)

 $L \simeq \mathbb{C} \subset \mathbb{CP}^2 \text{ generic line, } i : L - \{p_1, \dots, p_d\} \hookrightarrow \mathbb{CP}^2 - D$ $\Rightarrow i_* : F_d = \langle \gamma_1, \dots, \gamma_d \rangle \twoheadrightarrow \pi_1(\mathbb{CP}^2 - D) \text{ surjective.}$ Geometric generators: $\Gamma = \{\text{conjugates of } i_*\gamma_1, \dots, i_*\gamma_d\}.$ $\theta : \pi_1(\mathbb{CP}^2 - D) \to S_N \text{ maps elements of } \Gamma \text{ to transpositions.}$ $\delta : \pi_1(\mathbb{CP}^2 - D) \to \mathbb{Z}_d \text{ linking number } (\delta(\gamma_i) = 1).$ Relations: for each special point, two elements of Γ s.t. • tangency: $\gamma = \gamma'; \qquad \theta(\gamma) \text{ and } \theta(\gamma') \text{ identical.}$

• node: $\gamma \gamma' = \gamma' \gamma;$ $\theta(\gamma)$ and $\theta(\gamma')$ disjoint. • cusp: $\gamma \gamma' \gamma = \gamma' \gamma \gamma';$ $\theta(\gamma)$ and $\theta(\gamma')$ adjacent.

 $K = \text{normal subgroup } \langle [\gamma, \gamma'], \gamma, \gamma' \in \Gamma, \theta(\gamma), \theta(\gamma') \text{ disjoint} \rangle.$ Add a pair of nodes \Leftrightarrow quotient by an element of K.

 $\mathbf{M} = \mathbf{M} =$

Theorem 3. For $k \gg 0$, $G_k(X, \omega) = \pi_1(\mathbb{CP}^2 - D_k)/K_k$ and $G_k^0(X, \omega) = \text{Ker}(\theta_k, \delta_k)/K_k$ are symplectic invariants.

Stabilized fundamental groups

Fact:
$$1 \longrightarrow G_k^0 \longrightarrow G_k \xrightarrow{(\theta_k, \delta_k)} S_N \times \mathbb{Z}_d \longrightarrow \mathbb{Z}_2 \longrightarrow 1.$$

 $(N = \deg f_k, d = \deg D_k)$

Theorem 4. If $\pi_1(X) = 1$ then we have a natural surjection $\phi_k : \operatorname{Ab} G_k^0 \to (\mathbb{Z}^2/\Lambda_k)^{N-1}$.

 $\Lambda_k = \{ (L^{\otimes k} \cdot C, K_X \cdot C), \ C \in H_2(X, \mathbb{Z}) \}.$

Known examples:

- \mathbb{CP}^2 , $\mathbb{CP}^1 \times \mathbb{CP}^1$ (Moishezon)
- some rational and K3 complete intersections (Robb)
- Hirzebruch surfaces, double covers of $\mathbb{CP}^1 \times \mathbb{CP}^1$ (ADKY)

 \Rightarrow **Conjectures:** for $k \gg 0$,

1) X alg. surface
$$\Rightarrow K_k = \{1\}$$
 and $G_k = \pi_1(\mathbb{CP}^2 - D_k)$.

- 2) $\pi_1(X) = 1 \Rightarrow \phi_k$ is an isomorphism.
- 3) $\pi_1(X) = 1 \Rightarrow [G_k^0, G_k^0] =$ quotient of $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Still looking for how to extract useful invariants from braid factorization...

Non-isotopic singular plane curves

(Auroux-Donaldson-Katzarkov: math.GT/0206005)

Isotopy phenomena: (following Gromov, ...)

• Siebert-Tian (2002): every smooth symplectic curve of degree ≤ 17 in \mathbb{CP}^2 is isotopic to a complex curve. Also in \mathbb{P}^1 -bundles over \mathbb{P}^1 for connected curves s.t. $[C] \cdot [F] \leq 7$.

• Barraud (2000), Shevchishin (2002): isotopy for certain simple singular configurations in \mathbb{CP}^2 .

Non-isotopy phenomena:

• Fintushel-Stern (1999), Smith (2001): infinitely many nonisotopic smooth connected symplectic curves in certain 4manifolds (multiples of classes of square zero).

Use braiding constructions on parallel copies; distinguish using topology of branched covers (SW invariants, \dots)

• Moishezon (1992): infinitely many non-isotopic singular symplectic curves in \mathbb{CP}^2 (fixed number of cusp and node singularities).

Use braid monodromy and π_1 of complement (hard!)

 \Rightarrow elementary interpretation of Moishezon ?

It is also a braiding construction !

Non-isotopic singular plane curves

Given $f: X \to Y$ symplectic covering with branch curve D, Braiding D / Lagrangian annulus $A \iff$

Luttinger surgery of X / Lagrangian torus $T \subset f^{-1}(A)$.

(i.e. take out a neighborhood of T and glue it back via a symplectomorphism wrapping the meridian around the torus).

Moishezon examples: $D_0 = 3p(p-1)$ smooth cubics in a pencil $(p \ge 2)$, remove balls around 9 intersection points, insert branch curve of deg. p polynomial map $\mathbb{CP}^2 \to \mathbb{CP}^2$ in each location. $D_j = \text{twist } j$ times in a well-chosen manner.

• Moishezon:

Before twisting: $\pi_1(\mathbb{CP}^2 - D_0)$ is infinite. After twisting: $\pi_1(\mathbb{CP}^2 - D_j)$ finite, of different orders.

• Topological interpretation: Before twisting: $c_1(K_{X_0}) = \lambda[\omega_{X_0}].$ After twisting: $c_1(K_{X_j}) = \lambda[\omega_{X_j}] + \mu j [T]^{PD} \quad (\mu \neq 0).$