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Symplectic manifolds

A symplectic structure on a smooth manifold is a 2-form ω
such that dω = 0 and ω ∧ · · · ∧ ω is a volume form.

Example: R2n, ω0 =
∑

dxi ∧ dyi.

(Darboux: every symplectic manifold is locally ' (R2n, ω0),
i.e. there are no local invariants).

Example: Riemann surfaces (Σ, volΣ) are symplectic.
Example: Every Kähler manifold is symplectic.

(includes all complex projective manifolds)

but the symplectic category is much larger.
(Gompf 1994: ∀G finitely presented group, ∃(X4, ω) compact
symplectic such that π1(X) = G).

Symplectic manifolds are not always complex, but they are
almost-complex, i.e. there exists J ∈ End(TX) such that

J2 = −Id, g(u, v) := ω(u, Jv) Riemannian metric.

At any given point (X,ω, J) looks like (Cn, ω0, i), but J is
not integrable (∇J 6= 0; ∂̄2 6= 0). So there are no holomorphic
functions (in particular no holomorphic local coordinates).
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Symplectic topology

Typical problems:
– Which smooth manifolds admit symplectic structures ?
– Classify symplectic structures on a given smooth manifold.

(Moser: if [ω] ∈ H2(X,R) is fixed then all small deformations
are trivial).

Why we care:
– Physics (classical mechanics; string theory; ...)
– Next step after understanding complex manifolds.

Some facts from complex geometry extend to symplectic
manifolds; most don’t.

A lot is known if dimX = 4. Core ingredient: structure
of Seiberg-Witten / Gromov-Witten invariants of symplectic
4-manifolds (Taubes).

For dimX ≥ 6, almost nothing is known. E.g., no known
non-trivial obstruction to the symplecticity of compact 6-
manifolds (except ∃[ω] ∈ H2(X,R) s.t. [ω]∧3 6= 0).
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Approximately holomorphic geometry

Idea:
Since we have almost-complex structures, even though there

are no holomorphic sections and linear systems, we can work
similarly with approximately holomorphic objects.
(Donaldson, ∼1995)

Setup: (X2n, ω) symplectic, compact

•
1
2π [ω] ∈ H

2(X,Z) (not restrictive)

• J compatible with ω ; g(., .) = ω(., J.)

• L line bundle such that c1(L) =
1
2π [ω]

• ∇L, with curvature −iω; ∇L = ∂L + ∂̄L.
∂̄Ls(v) = 1

2(∇
Ls(v) + i∇Ls(Jv)).

If X Kähler, then L is a holomorphic ample line bundle, i.e.
L⊗k has many holomorphic sections for k large enough.

⇒ projective embeddings X ↪→ CPN (Kodaira).

⇒ smooth hypersurfaces (Bertini).

⇒ linear systems, projective maps.
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Approximately holomorphic sections

X symplectic: J is not integrable⇒ no holomorphic sections.
However, local approximately holomorphic model:

(X, x), ω, J ←→ (Cn, 0), ω0, (i + . . . )

L⊗k, ∇ ←→ C, d + k
4

∑

(zjdz̄j − z̄jdzj).

-¾ k−1/2

x

⇒ sk,x(z) = exp(−14k|z|
2) is

approx. holomorphic !

A sequence of sections sk ∈ Γ(L⊗k) is approx. holomorphic
if sup |∂̄sk| < C k−1/2 sup |∂sk| (& higher order derivatives).

Goal: find approx. holom. sections with “generic” behavior.

Theorem 1. (Donaldson, 1996) If k À 0, then L⊗k

admits approx. holomorphic sections sk whose zero sets

Wk are smooth symplectic hypersurfaces.

Make up for loss of holomorphicity by achieving estimated
transversality: require |∂sk(x)| À sup |∂̄sk| along s

−1
k (0).

(uniform lower bound instead of just ∂sk(x) 6= 0)

Also consider linear systems of ≥ 2 sections:

E.g., (s0, s1) well-chosen approx. hol. sections of L⊗k (k À 0)
⇒ symplectic Lefschetz pencils (Donaldson, 1999)
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Branched covers of CP2

Theorem 2. (A., 2000) For k À 0, three suitable ap-

prox. hol. sections of L⊗k define a map X → CP2 with
generic local models, canonical up to isotopy.

(X4, ω) symplectic, s0, s1, s2 ∈ Γ(L⊗k) well-chosen
⇒ f = (s0 : s1 : s2) : X → CP2.

Local models near branch curve R ⊂ X :

– branched cover : (x, y) 7→ (x2, y).

R : x = 0 f (R) : X = 0

X2n → CP2: (z1, . . . , zn) 7→ (z21 + · · · + z2n−1, zn)

– cusp : (x, y) 7→ (x3 − xy, y).

R : y = 3x2 f (R) : 27X2 = 4Y 3

X2n → CP2: (z1, . . . , zn) 7→ (z31 − z1zn+ z22 + · · ·+ z2n−1, zn)

R smooth connected symplectic curve in X .
D = f (R) symplectic, immersed except at the cusps.

Generic singularities :

complex cusps; nodes (both orientations)

r r+ r−

Theorem 2⇒ up to cancellation of nodes, the topology of D
is a symplectic invariant (if k large).
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Topological invariants

X
N :1
−→

CP2
D

r
r

γi

Topological data for a branched cover of CP2:
1) Branch curve: D ⊂ CP2
(up to isotopy and node cancellations).

2) Monodromy: θ : π1(CP2 −D)→ SN (N = deg f )
(surjective, maps γi to transpositions).

D and θ determine (X,ω) up to symplectomorphism.

When dimX > 4, main difference: θ takes values in the
mapping class group of the generic fiber.
This group is complicated; however there is a dimensional

induction procedure ⇒ given (X2n, ω) and k À 0 we get

1) (n− 1) plane curves Dn, Dn−1, . . . , D2 ⊂ CP2.
2) θ2 : π1(CP2 −D2)→ SN .

and these data determine (X,ω) up to symplectomorphism.

⇒ In principle it is enough to understand plane curves !
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The topology of plane curves

(Moishezon-Teicher; Auroux-Katzarkov)

Perturbation ⇒ D = singular branched cover of CP1.

?
π : (x0 : x1 : x2) 7→ (x0 : x1)

CP1

CP2 − {∞} D

degD = d

r r r

r r
r

γi

Monodromy = ρ : π1(C− {pts})→ Bd (braid group)

⇒ D is described by a “braid group factorization”
(involving cusps, nodes, tangencies).

The braid factorization characterizes D completely.

Problem: once computed, cannot be compared.

⇒ more manageable (incomplete) invariant ?

Moishezon-Teicher: π1(CP2 −D) to study complex surfaces.

π1(CP2−D) is generated by “geometric generators” (γi)1≤i≤d ;
relations given by the braid factorization.

But: in the symplectic case, affected by node cancellations.
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Stabilized fundamental groups

(Auroux-Donaldson-Katzarkov-Yotov: math.GT/0203183)

X4 f
−→

CP2
D

degD = dr r
r

γi

L

L ' C ⊂ CP2 generic line, i : L− {p1, . . . , pd} ↪→ CP2−D
⇒ i∗ : Fd = 〈γ1, . . . , γd〉³ π1(CP2 −D) surjective.

Geometric generators: Γ = {conjugates of i∗γ1, . . . , i∗γd}.

θ : π1(CP2−D)→ SN maps elements of Γ to transpositions.

δ : π1(CP2 −D)→ Zd linking number (δ(γi) = 1).

Relations: for each special point, two elements of Γ s.t.

• tangency: γ = γ ′; θ(γ) and θ(γ ′) identical.
• node: γγ ′ = γ′γ; θ(γ) and θ(γ ′) disjoint.
• cusp: γγ ′γ = γ ′γγ′; θ(γ) and θ(γ ′) adjacent.

K =normal subgroup 〈[γ, γ ′], γ, γ ′ ∈ Γ, θ(γ), θ(γ ′) disjoint〉.

Add a pair of nodes ⇔ quotient by an element of K.

Theorem 3. For k À 0, Gk(X,ω) = π1(CP2 − Dk)/Kk

and G0
k(X,ω) = Ker (θk, δk)/Kk are symplectic invariants.
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Stabilized fundamental groups

Fact: 1 −→ G0
k −→ Gk

(θk,δk)−→ SN × Zd −→ Z2 −→ 1.

(N = deg fk, d = degDk)

Theorem 4. If π1(X) = 1 then we have a natural surjec-

tion φk : AbG0
k → (Z2/Λk)

N−1.

Λk = {(L⊗k · C,KX · C), C ∈ H2(X,Z)}.

Known examples:

• CP2, CP1 × CP1 (Moishezon)
• some rational and K3 complete intersections (Robb)
• Hirzebruch surfaces, double covers of CP1×CP1 (ADKY)

⇒ Conjectures: for k À 0,

1) X alg. surface ⇒ Kk = {1} and Gk = π1(CP2 −Dk).
2) π1(X) = 1 ⇒ φk is an isomorphism.
3) π1(X) = 1 ⇒ [G0

k, G
0
k] = quotient of Z2 × Z2.

Still looking for how to extract useful invariants from braid
factorization...
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Non-isotopic singular plane curves

(Auroux-Donaldson-Katzarkov: math.GT/0206005)

Isotopy phenomena: (following Gromov, . . . )

• Siebert-Tian (2002): every smooth symplectic curve of de-
gree ≤ 17 in CP2 is isotopic to a complex curve. Also in
P1-bundles over P1 for connected curves s.t. [C] · [F ] ≤ 7.

• Barraud (2000), Shevchishin (2002): isotopy for certain sim-
ple singular configurations in CP2.

Non-isotopy phenomena:

• Fintushel-Stern (1999), Smith (2001): infinitely many non-
isotopic smooth connected symplectic curves in certain 4-
manifolds (multiples of classes of square zero).

Use braiding constructions on parallel copies; distinguish
using topology of branched covers (SW invariants, . . . )

• Moishezon (1992): infinitely many non-isotopic singular
symplectic curves in CP2 (fixed number of cusp and node
singularities).

Use braid monodromy and π1 of complement (hard!)

⇒ elementary interpretation of Moishezon ?
It is also a braiding construction !
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Non-isotopic singular plane curves

A

D D̃

Given f : X → Y symplectic covering with branch curve D,

Braiding D / Lagrangian annulus A ⇐⇒
Luttinger surgery of X / Lagrangian torus T ⊂ f−1(A).

(i.e. take out a neighborhood of T and glue it back via a sym-
plectomorphism wrapping the meridian around the torus).

Moishezon examples: D0 = 3p(p − 1) smooth cubics in
a pencil (p ≥ 2), remove balls around 9 intersection points,
insert branch curve of deg. p polynomial map CP2 → CP2 in
each location. Dj = twist j times in a well-chosen manner.

• Moishezon:
Before twisting: π1(CP2 −D0) is infinite.
After twisting: π1(CP2 −Dj) finite, of different orders.

• Topological interpretation:
Before twisting: c1(KX0) = λ[ωX0].
After twisting: c1(KXj

) = λ[ωXj
] + µ j [T ]PD (µ 6= 0).
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