Singular plane curves and symplectic 4-manifolds

Denis AUROUX

Symplectic manifolds

A symplectic structure on a smooth manifold is a 2 -form ω such that $d \omega=0$ and $\omega \wedge \cdots \wedge \omega$ is a volume form.

Example: $\mathbb{R}^{2 n}, \omega_{0}=\sum d x_{i} \wedge d y_{i}$.
(Darboux: every symplectic manifold is locally $\simeq\left(\mathbb{R}^{2 n}, \omega_{0}\right)$, i.e. there are no local invariants).

Example: Riemann surfaces $\left(\Sigma\right.$, vol $\left._{\Sigma}\right)$ are symplectic.
Example: Every Kähler manifold is symplectic.
(includes all complex projective manifolds)
but the symplectic category is much larger.
(Gompf 1994: $\forall G$ finitely presented group, $\exists\left(X^{4}, \omega\right)$ compact symplectic such that $\left.\pi_{1}(X)=G\right)$.

Symplectic manifolds are not always complex, but they are almost-complex, i.e. there exists $J \in \operatorname{End}(T X)$ such that

$$
J^{2}=-\mathrm{Id}, \quad g(u, v):=\omega(u, J v) \text { Riemannian metric. }
$$

At any given point (X, ω, J) looks like $\left(\mathbb{C}^{n}, \omega_{0}, i\right)$, but J is not integrable $\left(\nabla J \neq 0 ; \bar{\partial}^{2} \neq 0\right)$. So there are no holomorphic functions (in particular no holomorphic local coordinates).

Symplectic topology

Typical problems:

- Which smooth manifolds admit symplectic structures ?
- Classify symplectic structures on a given smooth manifold.
(Moser: if $[\omega] \in H^{2}(X, \mathbb{R})$ is fixed then all small deformations are trivial).

Why we care:

- Physics (classical mechanics; string theory; ...)
- Next step after understanding complex manifolds.

Some facts from complex geometry extend to symplectic manifolds; most don't.

A lot is known if $\operatorname{dim} X=4$. Core ingredient: structure of Seiberg-Witten / Gromov-Witten invariants of symplectic 4-manifolds (Taubes).

For $\operatorname{dim} X \geq 6$, almost nothing is known. E.g., no known non-trivial obstruction to the symplecticity of compact 6manifolds (except $\exists[\omega] \in H^{2}(X, \mathbb{R})$ s.t. $[\omega]^{\wedge 3} \neq 0$).

Approximately holomorphic geometry

Idea:
Since we have almost-complex structures, even though there are no holomorphic sections and linear systems, we can work similarly with approximately holomorphic objects.
(Donaldson, ~1995)
Setup: $\left(X^{2 n}, \omega\right)$ symplectic, compact

- $\frac{1}{2 \pi}[\omega] \in H^{2}(X, \mathbb{Z})$ (not restrictive)
- J compatible with $\omega ; g(.,)=.\omega(., J$.
- L line bundle such that $c_{1}(L)=\frac{1}{2 \pi}[\omega]$
- ∇^{L}, with curvature $-i \omega ; \nabla^{L}=\partial^{L}+\bar{\partial}^{L}$.

$$
\bar{\partial}^{L} s(v)=\frac{1}{2}\left(\nabla^{L} s(v)+i \nabla^{L} s(J v)\right)
$$

If X Kähler, then L is a holomorphic ample line bundle, i.e. $L^{\otimes k}$ has many holomorphic sections for k large enough. \Rightarrow projective embeddings $X \hookrightarrow \mathbb{C P}^{N}$ (Kodaira).
\Rightarrow smooth hypersurfaces (Bertini).
\Rightarrow linear systems, projective maps.

Approximately holomorphic sections

X symplectic: J is not integrable \Rightarrow no holomorphic sections. However, local approximately holomorphic model:

$$
\begin{aligned}
(X, x), \omega, J & \longleftrightarrow
\end{aligned} \begin{aligned}
& \left(\mathbb{C}^{n}, 0\right), \omega_{0},(i+\ldots) \\
L^{\otimes k}, \nabla & \longleftrightarrow \\
& , d+\frac{k}{4} \sum\left(z_{j} d \bar{z}_{j}-\bar{z}_{j} d z_{j}\right) \\
& \Rightarrow s_{k, x}(z)=\exp \left(-\frac{1}{4} k|z|^{2}\right) \text { is } \\
& \text { approx. holomorphic ! }
\end{aligned}
$$

A sequence of sections $s_{k} \in \Gamma\left(L^{\otimes k}\right)$ is approx. holomorphic if sup $\left|\bar{\partial}_{s_{k}}\right|<C k^{-1 / 2} \sup \left|\partial s_{k}\right|$ (\& higher order derivatives).
Goal: find approx. holom. sections with "generic" behavior. Theorem 1. (Donaldson, 1996) If $k \gg 0$, then $L^{\otimes k}$ admits approx. holomorphic sections s_{k} whose zero sets W_{k} are smooth symplectic hypersurfaces.

Make up for loss of holomorphicity by achieving estimated transversality: require $\left|\partial s_{k}(x)\right| \gg \sup \left|\bar{\partial} s_{k}\right|$ along $s_{k}^{-1}(0)$. (uniform lower bound instead of just $\partial s_{k}(x) \neq 0$)
Also consider linear systems of ≥ 2 sections:
E.g., $\left(s_{0}, s_{1}\right)$ well-chosen approx. hol. sections of $L^{\otimes k}(k \gg 0)$ \Rightarrow symplectic Lefschetz pencils (Donaldson, 1999)

Branched covers of $\mathbb{C P}^{2}$

Theorem 2. (A., 2000) For $k \gg 0$, three suitable approx. hol. sections of $L^{\otimes k}$ define a map $X \rightarrow \mathbb{C P}^{2}$ with generic local models, canonical up to isotopy.
$\left(X^{4}, \omega\right)$ symplectic, $s_{0}, s_{1}, s_{2} \in \Gamma\left(L^{\otimes k}\right)$ well-chosen
$\Rightarrow f=\left(s_{0}: s_{1}: s_{2}\right): X \rightarrow \mathbb{C P}^{2}$.
Local models near branch curve $R \subset X$:

- branched cover : $(x, y) \mapsto\left(x^{2}, y\right)$.
$R: x=0 \quad f(R): X=0$

$X^{2 n} \rightarrow \mathbb{C P}^{2}:\left(z_{1}, \ldots, z_{n}\right) \mapsto\left(z_{1}^{2}+\cdots+z_{n-1}^{2}, z_{n}\right)$
- cusp : $(x, y) \mapsto\left(x^{3}-x y, y\right)$.
$R: y=3 x^{2} \quad f(R): 27 X^{2}=4 Y^{3}$

$X^{2 n} \rightarrow \mathbb{C P}^{2}:\left(z_{1}, \ldots, z_{n}\right) \mapsto\left(z_{1}^{3}-z_{1} z_{n}+z_{2}^{2}+\cdots+z_{n-1}^{2}, z_{n}\right)$
R smooth connected symplectic curve in X.
$D=f(R)$ symplectic, immersed except at the cusps.
Generic singularities :
complex cusps; nodes (both orientations)

Theorem $2 \Rightarrow$ up to cancellation of nodes, the topology of D is a symplectic invariant (if k large).

Topological invariants

Topological data for a branched cover of $\mathbb{C P}^{2}$:

1) Branch curve: $D \subset \mathbb{C} \mathbb{P}^{2}$
(up to isotopy and node cancellations).
2) Monodromy: $\theta: \pi_{1}\left(\mathbb{C P}^{2}-D\right) \rightarrow S_{N} \quad(N=\operatorname{deg} f)$
(surjective, maps γ_{i} to transpositions).
D and θ determine (X, ω) up to symplectomorphism.

When $\operatorname{dim} X>4$, main difference: θ takes values in the mapping class group of the generic fiber.

This group is complicated; however there is a dimensional induction procedure \Rightarrow given $\left(X^{2 n}, \omega\right)$ and $k \gg 0$ we get

1) $(n-1)$ plane curves $D_{n}, D_{n-1}, \ldots, D_{2} \subset \mathbb{C P}^{2}$.
2) $\theta_{2}: \pi_{1}\left(\mathbb{C P}^{2}-D_{2}\right) \rightarrow S_{N}$.
and these data determine (X, ω) up to symplectomorphism.
\Rightarrow In principle it is enough to understand plane curves !

The topology of plane curves

(Moishezon-Teicher; Auroux-Katzarkov)
Perturbation $\Rightarrow D=$ singular branched cover of $\mathbb{C P}^{1}$.

$\operatorname{deg} D=d$

Monodromy $=\rho: \pi_{1}(\mathbb{C}-\{\mathrm{pts}\}) \rightarrow B_{d}$ (braid group)
$\Rightarrow D$ is described by a "braid group factorization" (involving cusps, nodes, tangencies).
The braid factorization characterizes D completely.
Problem: once computed, cannot be compared.
\Rightarrow more manageable (incomplete) invariant ?
Moishezon-Teicher: $\pi_{1}\left(\mathbb{C P}^{2}-D\right)$ to study complex surfaces.
$\pi_{1}\left(\mathbb{C P}^{2}-D\right)$ is generated by "geometric generators" $\left(\gamma_{i}\right)_{1 \leq i \leq d} ;$ relations given by the braid factorization.

But: in the symplectic case, affected by node cancellations.

Stabilized fundamental groups

(Auroux-Donaldson-Katzarkov-Yotov: math.GT/0203183)

$$
X^{4} \xrightarrow{f}
$$

$\operatorname{deg} D=d$
$L \simeq \mathbb{C} \subset \mathbb{C P}^{2}$ generic line, $i: L-\left\{p_{1}, \ldots, p_{d}\right\} \hookrightarrow \mathbb{C P}^{2}-D$ $\Rightarrow i_{*}: F_{d}=\left\langle\gamma_{1}, \ldots, \gamma_{d}\right\rangle \rightarrow \pi_{1}\left(\mathbb{C P}^{2}-D\right)$ surjective.
Geometric generators: $\Gamma=\left\{\right.$ conjugates of $\left.i_{*} \gamma_{1}, \ldots, i_{*} \gamma_{d}\right\}$. $\theta: \pi_{1}\left(\mathbb{C P}^{2}-D\right) \rightarrow S_{N}$ maps elements of Γ to transpositions. $\delta: \pi_{1}\left(\mathbb{C P}^{2}-D\right) \rightarrow \mathbb{Z}_{d}$ linking number $\left(\delta\left(\gamma_{i}\right)=1\right)$.
Relations: for each special point, two elements of Γ s.t.

- tangency: $\quad \gamma=\gamma^{\prime} ; \quad \theta(\gamma)$ and $\theta\left(\gamma^{\prime}\right)$ identical.
- node: $\quad \gamma \gamma^{\prime}=\gamma^{\prime} \gamma ; \quad \theta(\gamma)$ and $\theta\left(\gamma^{\prime}\right)$ disjoint.
- cusp: $\quad \gamma \gamma^{\prime} \gamma=\gamma^{\prime} \gamma \gamma^{\prime} ; \quad \theta(\gamma)$ and $\theta\left(\gamma^{\prime}\right)$ adjacent. $K=$ normal subgroup $\left\langle\left[\gamma, \gamma^{\prime}\right], \gamma, \gamma^{\prime} \in \Gamma, \theta(\gamma), \theta\left(\gamma^{\prime}\right)\right.$ disjoint \rangle.

Add a pair of nodes \Leftrightarrow quotient by an element of K.
Theorem 3. For $k \gg 0, G_{k}(X, \omega)=\pi_{1}\left(\mathbb{C P}^{2}-D_{k}\right) / K_{k}$ and $G_{k}^{0}(X, \omega)=\operatorname{Ker}\left(\theta_{k}, \delta_{k}\right) / K_{k}$ are symplectic invariants.

Stabilized fundamental groups

Fact: $1 \longrightarrow G_{k}^{0} \longrightarrow G_{k} \xrightarrow{\left(\theta_{k}, \delta_{k}\right)} S_{N} \times \mathbb{Z}_{d} \longrightarrow \mathbb{Z}_{2} \longrightarrow 1$.

$$
\left(N=\operatorname{deg} f_{k}, d=\operatorname{deg} D_{k}\right)
$$

Theorem 4. If $\pi_{1}(X)=1$ then we have a natural surjection $\phi_{k}: \operatorname{Ab} G_{k}^{0} \rightarrow\left(\mathbb{Z}^{2} / \Lambda_{k}\right)^{N-1}$.
$\Lambda_{k}=\left\{\left(L^{\otimes k} \cdot C, K_{X} \cdot C\right), C \in H_{2}(X, \mathbb{Z})\right\}$.

Known examples:

- $\mathbb{C P}^{2}, \mathbb{C P}^{1} \times \mathbb{C P}^{1}$ (Moishezon)
- some rational and K3 complete intersections (Robb)
- Hirzebruch surfaces, double covers of $\mathbb{C P}^{1} \times \mathbb{C P}^{1}($ ADKY $)$
\Rightarrow Conjectures: for $k \gg 0$,

1) X alg. surface $\Rightarrow K_{k}=\{1\}$ and $G_{k}=\pi_{1}\left(\mathbb{C P}^{2}-D_{k}\right)$.
2) $\pi_{1}(X)=1 \Rightarrow \phi_{k}$ is an isomorphism.
3) $\pi_{1}(X)=1 \Rightarrow\left[G_{k}^{0}, G_{k}^{0}\right]=$ quotient of $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Still looking for how to extract useful invariants from braid factorization...

Non-isotopic singular plane curves

(Auroux-Donaldson-Katzarkov: math.GT/0206005)
Isotopy phenomena: (following Gromov, ...)

- Siebert-Tian (2002): every smooth symplectic curve of degree ≤ 17 in $\mathbb{C P}^{2}$ is isotopic to a complex curve. Also in \mathbb{P}^{1}-bundles over \mathbb{P}^{1} for connected curves s.t. $[C] \cdot[F] \leq 7$.
- Barraud (2000), Shevchishin (2002): isotopy for certain simple singular configurations in $\mathbb{C P}^{2}$.

Non-isotopy phenomena:

- Fintushel-Stern (1999), Smith (2001): infinitely many nonisotopic smooth connected symplectic curves in certain 4manifolds (multiples of classes of square zero).

Use braiding constructions on parallel copies; distinguish using topology of branched covers (SW invariants, ...)

- Moishezon (1992): infinitely many non-isotopic singular symplectic curves in $\mathbb{C P}^{2}$ (fixed number of cusp and node singularities).
Use braid monodromy and π_{1} of complement (hard!)
\Rightarrow elementary interpretation of Moishezon?
It is also a braiding construction !

Non-isotopic singular plane curves

Given $f: X \rightarrow Y$ symplectic covering with branch curve D, Braiding $D /$ Lagrangian annulus $A \Longleftrightarrow$ Luttinger surgery of $X /$ Lagrangian torus $T \subset f^{-1}(A)$.
(i.e. take out a neighborhood of T and glue it back via a symplectomorphism wrapping the meridian around the torus).

Moishezon examples: $D_{0}=3 p(p-1)$ smooth cubics in a pencil $(p \geq 2)$, remove balls around 9 intersection points, insert branch curve of deg. p polynomial map $\mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2}$ in each location. $D_{j}=$ twist j times in a well-chosen manner.

- Moishezon:

Before twisting: $\pi_{1}\left(\mathbb{C P}^{2}-D_{0}\right)$ is infinite.
After twisting: $\pi_{1}\left(\mathbb{C P}^{2}-D_{j}\right)$ finite, of different orders.

- Topological interpretation:

Before twisting: $c_{1}\left(K_{X_{0}}\right)=\lambda\left[\omega_{X_{0}}\right]$.
After twisting: $c_{1}\left(K_{X_{j}}\right)=\lambda\left[\omega_{X_{j}}\right]+\mu j[T]^{P D} \quad(\mu \neq 0)$.

