Symplectic 4-manifolds, singular plane curves, and isotopy problems

Denis AUROUX

Massachusetts Inst. of Technology and Ecole Polytechnique

Symplectic manifolds

A symplectic structure on a smooth manifold is a 2 -form ω such that $d \omega=0$ and $\omega \wedge \cdots \wedge \omega$ is a volume form.

Example: $\mathbb{R}^{2 n}, \omega_{0}=\sum d x_{i} \wedge d y_{i}$.
(Darboux: every symplectic manifold is locally $\simeq\left(\mathbb{R}^{2 n}, \omega_{0}\right)$, i.e. there are no local invariants).

Example: Riemann surfaces $\left(\Sigma\right.$, vol $\left._{\Sigma}\right) ; \mathbb{C P}^{n} ;$ complex projective manifolds.
The symplectic category is strictly larger (Thurston 1976).
Gompf 1994: G finitely presented group $\Rightarrow \exists\left(X^{4}, \omega\right)$ compact symplectic such that $\pi_{1}(X)=G$.

Symplectic manifolds are not always complex, but they are almost-complex, i.e. there exists $J \in \operatorname{End}(T X)$ such that

$$
J^{2}=-\mathrm{Id}, \quad g(u, v):=\omega(u, J v) \text { Riemannian metric. }
$$

At any given point (X, ω, J) looks like $\left(\mathbb{C}^{n}, \omega_{0}, i\right)$, but J is not integrable $(\nabla J \neq 0$; $\bar{\partial}^{2} \neq 0$; no holomorphic coordinates).

Symplectic topology

Hierarchy of compact oriented 4-manifolds:

COMPLEX PROJ. \subsetneq SYMPLECTIC \subsetneq SMOOTH

\Rightarrow Classification questions!
Symplectic manifolds retain some (not all!) features of complex proj. manifolds; yet (almost) every smooth 4-manifold admits a "near-symplectic" structure (sympl. outside circles).

Many new developments in the 1990s:

- J-holomorphic curves (Gromov-Witten invariants, Floer homology, ...)
- obstructions to existence of ω in dim. 4 (Taubes: Seiberg-Witten invariants)
- constructions of new examples (symplectic surgeries: Fintushel-Stern, Gompf)
- structure results (e.g., Donaldson: Lefschetz pencils)

Focus of the talk: symplectic branched covers in dimension 4.

Symplectic branched covers

X^{4} compact oriented, $\left(Y^{4}, \omega_{Y}\right)$ compact symplectic.
$f: X \rightarrow Y$ is a symplectic branched covering if $\forall p \in X, \exists$ local coordinates

$$
\left.\begin{array}{l}
\phi: X \supset U_{p} \rightarrow \mathbb{C}^{2} \quad \text { (oriented) } \\
\psi: Y \supset V_{f(p)} \rightarrow \mathbb{C}^{2}\left(\text { compatible: } \omega_{Y}(v, i v)>0\right)
\end{array}\right\} \text { in which } f \text { is one of: }
$$

- local diffeomorphism: $(x, y) \mapsto(x, y)$.
- simple branching: $(x, y) \mapsto\left(x^{2}, y\right)$.

$$
R: x=0 \quad f(R): z_{1}=0
$$

- cusp: $(x, y) \mapsto\left(x^{3}-x y, y\right)$.

$$
R: y=3 x^{2} \quad f(R): 27 z_{1}^{2}=4 z_{2}^{3}
$$

$R=\{\operatorname{det}(d f)=0\} \subset X$ is the ramification curve (smooth).
$D=f(R)$ is the branch curve (symplectic: $\omega_{\mid T D}>0$), with singularities: complex cusps; nodes (both orientations)

Proposition. X carries a natural symplectic structure.

Branched covers of $\mathbb{C P}{ }^{2}$

Proposition. $f: X^{4} \rightarrow\left(Y^{4}, \omega_{Y}\right)$ symplectic branched cover $\Rightarrow X$ carries a natural symplectic structure.
$\left[\omega_{X}\right]=\left[f^{*} \omega_{Y}\right], \omega_{X}$ is canonical up to symplectomorphism.
Theorem. $\left(X^{4}, \omega\right)$ compact symplectic, $[\omega] \in H^{2}(X, \mathbb{Z}) \Rightarrow X$ can be realized as symplectic branched cover of $\mathbb{C P}^{2}$.
$\exists f_{k}: X \rightarrow \mathbb{C P}^{2}$, inducing $\omega_{k} \sim k \omega$, canonical up to isotopy for $k \gg 0$. The topology of f_{k}, e.g. the branch curve $D_{k} \subset \mathbb{C P}^{2}$, yields invariants of (X, ω).
Tool: "approx. hol. geometry": sections of $L^{\otimes k}, c_{1}\left(L^{\otimes k}\right)=k[\omega]$, with $|\bar{\partial} s|_{C^{0}} \ll|\partial s|_{C^{0}}$.
$D_{k} \subset \mathbb{C P}^{2}$ symplectic, with generic singularities $=$ complex cusps, and nodes (both orientations)
Theorem \Rightarrow up to cancellation of pairs of nodes, the topology of D_{k} is a symplectic invariant (if k large).

Topological invariants

$$
X \xrightarrow{N: 1}
$$

Topological data for a branched cover of $\mathbb{C P}^{2}$:

1) Branch curve: $D \subset \mathbb{C P}^{2} \quad$ (up to isotopy and node cancellations).
2) Monodromy: $\theta: \pi_{1}\left(\mathbb{C P}^{2}-D\right) \rightarrow S_{N} \quad(N=\operatorname{deg} f) \quad\left(\right.$ maps γ_{i} to transpositions).
D and θ determine (X, ω) up to symplectomorphism.
\Rightarrow In principle it is enough to understand plane curves !

Fact: D is isotopic to a complex curve (up to node cancellations) iff X is Kähler (complex projective).
\Rightarrow study the symplectic isotopy problem.

The topology of plane curves

(Moishezon-Teicher; Auroux-Katzarkov)
Perturbation $\Rightarrow D=$ singular branched cover of $\mathbb{C P}^{1}$.

Monodromy $=\rho: \pi_{1}\left(\mathbb{C}-\{\right.$ pts\} $) \rightarrow B_{d}$ (braid group)
$\Rightarrow D$ is described by a "braid group factorization" (involving cusps, nodes, tangencies).
The braid factorization characterizes D completely (and gives a combinatorial description of sympl. manifolds)

Problem: can compute for examples, but can't compare.
\Rightarrow more manageable (incomplete) invariant ?

Stabilized fundamental groups

(Auroux-Donaldson-Katzarkov-Yotov 2002)
Question (Zariski...): D sing. plane curve, $\pi_{1}\left(\mathbb{C P}^{2}-D\right)=$?
Moishezon-Teicher: $\pi_{1}\left(\mathbb{C P}^{2}-D\right)$ to study complex surfaces.
$\pi_{1}\left(\mathbb{C P}^{2}-D\right)$ is related to the braid factorization. (Zariski-van Kampen theorem)
Belief: for high degree branch curves, $\pi_{1}\left(\mathbb{C P}^{2}-D\right)$ is determined in a simple manner by the topology of X ?

Symplectic stabilization of $\pi_{1}\left(\mathbb{C P}^{2}-D\right)$: adding nodes (in manner compatible with $\left.\theta: \pi_{1}\left(\mathbb{C P}^{2}-D\right) \rightarrow S_{N}\right)$ introduces commutation relations
\Rightarrow quotient by subgroup $K=\left\langle\left[\gamma, \gamma^{\prime}\right], \gamma, \gamma^{\prime}\right.$ geom. generators, $\theta(\gamma), \theta\left(\gamma^{\prime}\right)$ disjoint \rangle.
Theorem. For $k \gg 0, G_{k}(X, \omega)=\pi_{1}\left(\mathbb{C P}^{2}-D_{k}\right) / K_{k}$ is a symplectic invariant.

Stabilized fundamental groups

Fact: $1 \longrightarrow G_{k}^{0} \longrightarrow G_{k} \xrightarrow{\left(\theta_{k}, \delta_{k}\right)} S_{N} \times \mathbb{Z}_{d} \longrightarrow \mathbb{Z}_{2} \longrightarrow 1$.

$$
\left(N=\operatorname{deg} f_{k}, d=\operatorname{deg} D_{k} ; \theta_{k}=\text { monodromy, } \delta_{k}=\text { linking map }\right)
$$

Theorem. If $\pi_{1}(X)=1$ then we have a natural surjection $\phi_{k}: \operatorname{Ab} G_{k}^{0} \rightarrow\left(\mathbb{Z}^{2} / \Lambda_{k}\right)^{N-1}$ $\Lambda_{k}=\left\{\left(k[\omega] \cdot C, K_{X} \cdot C\right), C \in H_{2}(X, \mathbb{Z})\right\}$.

Known examples: (for $k \gg 0$)

- $\mathbb{C P}^{2}, \mathbb{C P}^{1} \times \mathbb{C P}^{1}$ (Moishezon)
- some rational surfaces and K3's (Robb; Teicher et al.)
- Hirzebruch surfaces, double covers of $\mathbb{C P}^{1} \times \mathbb{C P}^{1}$ (ADKY)
\Rightarrow Conjectures: for $k \gg 0$,

1) X alg. surface $\Rightarrow K_{k}=\{1\}$ and $G_{k}=\pi_{1}\left(\mathbb{C P}^{2}-D_{k}\right)$.
2) $\pi_{1}(X)=1 \Rightarrow \phi_{k}$ is an isomorphism.
3) $\pi_{1}(X)=1 \Rightarrow\left[G_{k}^{0}, G_{k}^{0}\right]=$ quotient of $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Isotopy results for plane curves

When is a (singular) symplectic curve in $\mathbb{C P}^{2}$ (or a complex surface) isotopic to a complex curve?

- Gromov (1985): every smooth symplectic curve of degree 1 or 2 in $\mathbb{C P}^{2}$ is isotopic to a complex curve.
(Tool: pseudo-holomorphic curves)
- Siebert-Tian (2002): smooth sympl. curves of degree ≤ 17 in $\mathbb{C P}^{2}$; connected curves of degree ≤ 7 in Hirzebruch surfaces.
- Barraud (2000), Shevchishin (2002): certain simple singular configurations in $\mathbb{C P}^{2}$.
- Francisco (2004): singular curves of degree $d \leq 9$ with m cusps in $\mathbb{C P}^{2}$ (if $d \geq 6$, assume $4(d-6)-1 \leq m<3 d / 2)$.
(in classification of branched covers, these are cases without any non-Kähler examples)

Stable isotopy results

D, D^{\prime} symplectic ("Hurwitz") curves in $\mathbb{C P}^{2}$ or Hirzebruch surfaces, $[D]=\left[D^{\prime}\right]$, same numbers of nodes, cusps, (A_{n}-sings.):

- Kharlamov-Kulikov (2003) \Rightarrow after adding sufficiently many lines (fibers) to D, D^{\prime} and smoothing the intersections, D, D^{\prime} become isotopic.
- A.-Kulikov-Shevchishin (2004): D, D^{\prime} are isotopic up to creations/cancellations of pairs of nodes.

(in general, not compatible with branched covers!)

For branched covers:

- (2002): X genus 2 Lefschetz fibration $\Rightarrow X$ becomes complex projective after stabilization by fiber sums with rational surfaces along genus 2 curves.
(extends to hyperelliptic Lefschetz fibrations; what about the general case?)
Conjecture: two compact integral symplectic 4-manifolds with same ($\left.c_{1}^{2}, c_{2}, c_{1} \cdot[\omega],[\omega]^{2}\right)$ become symplectomorphic after blow-ups and fiber sums with holomorphic fibrations.

Non-isotopy phenomena

- Fintushel-Stern (1999), Smith (2001): infinitely many non-isotopic smooth connected symplectic curves in certain 4-manifolds (multiples of classes of square zero).

Use braiding constructions on parallel copies; distinguish using topology of branched covers (SW invariants, ...)

- Etgu-Park, Vidussi (2001-2004)
- Moishezon (1992): infinitely many non-isotopic sing. sympl. curves in $\mathbb{C P}^{2}$ (fixed number of cusp and node singularities).

Use braid monodromy and π_{1} of complement (hard!)
(Auroux-Donaldson-Katzarkov 2002): elementary interpretation?
Moishezon \Leftrightarrow braiding; modifies $c_{1}\left(K_{X}\right)$ vs. $\left[\omega_{X}\right]$

Given $f: X \rightarrow Y$ symplectic covering with branch curve D,
Braiding $D /$ Lagrangian annulus $A \Longleftrightarrow$
Luttinger surgery of $X /$ Lagrangian torus $T \subset f^{-1}(A)$.
(i.e. take out a neighborhood of T and glue it back via a symplectomorphism wrapping the meridian around the torus).

Questions:

- are any two symplectic cuspidal plane curves with same (degree, \# nodes, \# cusps) equivalent under braiding moves?
- are any two compact integral symplectic 4-manifolds with same $\left(c_{1}^{2}, c_{2}, c_{1} \cdot[\omega],[\omega]^{2}\right)$ equivalent under Luttinger surgeries?
(Remark: many constructions rely on twisted fiber sums or link surgeries, which reduce to Luttinger surgery)

