Symplectic 4-manifolds, singular plane curves, and isotopy problems

Denis AUROUX

Massachusetts Inst. of Technology and Ecole Polytechnique

Symplectic manifolds

A symplectic structure on a smooth manifold is a 2-form ω such that $d\omega = 0$ and $\omega \wedge \cdots \wedge \omega$ is a volume form.

Example: \mathbb{R}^{2n} , $\omega_0 = \sum dx_i \wedge dy_i$.

(Darboux: every symplectic manifold is locally $\simeq (\mathbb{R}^{2n}, \omega_0)$, i.e. there are no local invariants).

Example: Riemann surfaces (Σ, vol_{Σ}) ; \mathbb{CP}^n ; complex projective manifolds.

The symplectic category is strictly larger (Thurston 1976).

Gompf 1994: G finitely presented group $\Rightarrow \exists (X^4, \omega)$ compact symplectic such that $\pi_1(X) = G$.

Symplectic manifolds are not always complex, but they are almost-complex, i.e. there exists $J \in \text{End}(TX)$ such that

 $J^2 = -\text{Id}, \quad g(u, v) := \omega(u, Jv)$ Riemannian metric.

At any given point (X, ω, J) looks like $(\mathbb{C}^n, \omega_0, i)$, but J is not integrable $(\nabla J \neq 0; \overline{\partial}^2 \neq 0;$ no holomorphic coordinates).

Symplectic topology

Hierarchy of compact oriented 4-manifolds:

COMPLEX PROJ. $\subsetneq\,$ SYMPLECTIC $\,\subsetneq\,$ SMOOTH

 \Rightarrow Classification questions!

Symplectic manifolds retain some (not all!) features of complex proj. manifolds; yet (almost) every smooth 4-manifold admits a "near-symplectic" structure (sympl. outside circles).

Many new developments in the 1990s:

- J-holomorphic curves (Gromov-Witten invariants, Floer homology, ...)
- obstructions to existence of ω in dim. 4 (Taubes: Seiberg-Witten invariants)
- constructions of new examples (symplectic surgeries: Fintushel-Stern, Gompf)
- structure results (e.g., Donaldson: Lefschetz pencils)

Focus of the talk: symplectic branched covers in dimension 4.

Symplectic branched covers

 $\begin{array}{l} X^4 \text{ compact oriented, } (Y^4, \omega_Y) \text{ compact symplectic.} \\ f: X \to Y \text{ is a symplectic branched covering if } \forall p \in X, \exists \text{ local coordinates} \\ \phi: X \supset U_p \to \mathbb{C}^2 \quad (\text{oriented}) \\ \psi: Y \supset V_{f(p)} \to \mathbb{C}^2 \text{ (compatible: } \omega_Y(v, iv) > 0) \end{array} \right\} \text{ in which } f \text{ is one of:}$

• local diffeomorphism: $(x, y) \mapsto (x, y)$.

• simple branching: $(x, y) \mapsto (x^2, y)$. $R: x = 0 \qquad f(R): z_1 = 0$

• cusp:
$$(x, y) \mapsto (x^3 - xy, y)$$
.
 $R: y = 3x^2 \qquad f(R): 27z_1^2 = 4z_2^3$

$$\begin{split} R &= \{\det(df) = 0\} \subset X \text{ is the ramification curve (smooth).} \\ D &= f(R) \text{ is the branch curve (symplectic: } \omega_{|TD} > 0), \text{ with singularities:} \\ &\quad \text{complex cusps; nodes (both orientations)} \end{split}$$

Proposition. X carries a natural symplectic structure.

 \succ \checkmark \checkmark

Branched covers of \mathbb{CP}^2

Proposition. $f: X^4 \to (Y^4, \omega_Y)$ symplectic branched cover $\Rightarrow X$ carries a natural symplectic structure.

 $[\omega_X] = [f^*\omega_Y], \, \omega_X$ is canonical up to symplectomorphism.

Theorem. (X^4, ω) compact symplectic, $[\omega] \in H^2(X, \mathbb{Z}) \Rightarrow X$ can be realized as symplectic branched cover of \mathbb{CP}^2 .

 $\exists f_k : X \to \mathbb{CP}^2$, inducing $\omega_k \sim k\omega$, canonical up to isotopy for $k \gg 0$. The topology of f_k , e.g. the branch curve $D_k \subset \mathbb{CP}^2$, yields invariants of (X, ω) .

<u>Tool</u>: "approx. hol. geometry": sections of $L^{\otimes k}$, $c_1(L^{\otimes k}) = k[\omega]$, with $|\bar{\partial}s|_{C^0} \ll |\partial s|_{C^0}$.

 $D_k \subset \mathbb{CP}^2$ symplectic, with generic singularities = complex cusps, and nodes (both orientations)

Theorem \Rightarrow up to cancellation of pairs of nodes, the topology of D_k is a symplectic invariant (if k large).

$$+$$
 \leftrightarrow $-$

Topological invariants

Topological data for a branched cover of \mathbb{CP}^2 :

- 1) Branch curve: $D \subset \mathbb{CP}^2$ (up to isotopy and node cancellations).
- 2) Monodromy: $\theta : \pi_1(\mathbb{CP}^2 D) \twoheadrightarrow S_N \quad (N = \deg f) \pmod{\max \gamma_i}$ to transpositions).
- D and θ determine (X, ω) up to symplectomorphism. \Rightarrow In principle it is enough to understand plane curves !

Fact: D is isotopic to a complex curve (up to node cancellations) iff X is Kähler (complex projective).

 \Rightarrow study the symplectic isotopy problem.

The topology of plane curves

(Moishezon-Teicher; Auroux-Katzarkov)

Perturbation $\Rightarrow D =$ singular branched cover of \mathbb{CP}^1 .

Monodromy = $\rho : \pi_1(\mathbb{C} - \{ \text{pts} \}) \to B_d$ (braid group)

 $\Rightarrow D$ is described by a "braid group factorization" (involving cusps, nodes, tangencies).

The braid factorization characterizes D completely (and gives a combinatorial description of sympl. manifolds)

Problem: can compute for examples, but can't compare. \Rightarrow more manageable (incomplete) invariant ?

Stabilized fundamental groups

(Auroux-Donaldson-Katzarkov-Yotov 2002)

Question (Zariski...): D sing. plane curve, $\pi_1(\mathbb{CP}^2 - D) = ?$ Moishezon-Teicher: $\pi_1(\mathbb{CP}^2 - D)$ to study complex surfaces.

 $\pi_1(\mathbb{CP}^2 - D)$ is related to the braid factorization. (Zariski-van Kampen theorem) **Belief:** for high degree branch curves, $\pi_1(\mathbb{CP}^2 - D)$ is determined in a simple manner by the topology of X?

Symplectic stabilization of $\pi_1(\mathbb{CP}^2 - D)$: adding nodes (in manner compatible with $\theta : \pi_1(\mathbb{CP}^2 - D) \to S_N$) introduces commutation relations \Rightarrow quotient by subgroup $K = \langle [\gamma, \gamma'], \gamma, \gamma' \text{ geom. generators, } \theta(\gamma), \theta(\gamma') \text{ disjoint} \rangle.$

Theorem. For $k \gg 0$, $G_k(X, \omega) = \pi_1(\mathbb{CP}^2 - D_k)/K_k$ is a symplectic invariant.

Stabilized fundamental groups

Fact: $1 \longrightarrow G_k^0 \longrightarrow G_k \xrightarrow{(\theta_k, \delta_k)} S_N \times \mathbb{Z}_d \longrightarrow \mathbb{Z}_2 \longrightarrow 1.$ $(N = \deg f_k, d = \deg D_k; \theta_k = \text{monodromy}, \delta_k = \text{linking map})$

Theorem. If $\pi_1(X) = 1$ then we have a natural surjection $\phi_k : \operatorname{Ab} G_k^0 \to (\mathbb{Z}^2/\Lambda_k)^{N-1}$ $\Lambda_k = \{ (k[\omega] \cdot C, K_X \cdot C), \ C \in H_2(X, \mathbb{Z}) \}.$

Known examples: (for $k \gg 0$)

- \mathbb{CP}^2 , $\mathbb{CP}^1 \times \mathbb{CP}^1$ (Moishezon)
- some rational surfaces and K3's (Robb; Teicher et al.)
- Hirzebruch surfaces, double covers of $\mathbb{CP}^1 \times \mathbb{CP}^1$ (ADKY)

\Rightarrow **Conjectures:** for $k \gg 0$,

1) X alg. surface
$$\Rightarrow K_k = \{1\}$$
 and $G_k = \pi_1(\mathbb{CP}^2 - D_k)$.
2) $\pi_1(X) = 1 \Rightarrow \phi_k$ is an isomorphism.
3) $\pi_1(X) = 1 \Rightarrow [G_k^0, G_k^0] =$ quotient of $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Isotopy results for plane curves

When is a (singular) symplectic curve in \mathbb{CP}^2 (or a complex surface) isotopic to a complex curve?

• Gromov (1985): every smooth symplectic curve of degree 1 or 2 in \mathbb{CP}^2 is isotopic to a complex curve.

(Tool: pseudo-holomorphic curves)

• Siebert-Tian (2002): smooth sympl. curves of degree ≤ 17 in \mathbb{CP}^2 ; connected curves of degree ≤ 7 in Hirzebruch surfaces.

• Barraud (2000), Shevchishin (2002): certain simple singular configurations in \mathbb{CP}^2 .

• Francisco (2004): singular curves of degree $d \leq 9$ with m cusps in \mathbb{CP}^2 (if $d \geq 6$, assume $4(d-6) - 1 \leq m < 3d/2$).

(in classification of branched covers, these are cases without any non-Kähler examples)

Stable isotopy results

D, D' symplectic ("Hurwitz") curves in \mathbb{CP}^2 or Hirzebruch surfaces, [D] = [D'], same numbers of nodes, cusps, $(A_n$ -sings.):

• Kharlamov-Kulikov (2003) \Rightarrow after adding sufficiently many lines (fibers) to D, D' and smoothing the intersections, D, D' become isotopic.

• A.-Kulikov-Shevchishin (2004): D, D' are isotopic up to creations/cancellations of pairs of nodes.

(in general, not compatible with branched covers!)

For branched covers:

• (2002): X genus 2 Lefschetz fibration \Rightarrow X becomes complex projective after stabilization by fiber sums with rational surfaces along genus 2 curves.

(extends to hyperelliptic Lefschetz fibrations; what about the general case?)

Conjecture: two compact integral symplectic 4-manifolds with same $(c_1^2, c_2, c_1.[\omega], [\omega]^2)$ become symplectomorphic after blow-ups and fiber sums with holomorphic fibrations.

Non-isotopy phenomena

• Fintushel-Stern (1999), Smith (2001): infinitely many non-isotopic smooth connected symplectic curves in certain 4-manifolds (multiples of classes of square zero).

Use braiding constructions on parallel copies; distinguish using topology of branched covers (SW invariants, $\dots)$

• Etgu-Park, Vidussi (2001-2004)

• Moishezon (1992): infinitely many non-isotopic sing. sympl. curves in \mathbb{CP}^2 (fixed number of cusp and node singularities).

Use braid monodromy and π_1 of complement (hard!)

(Auroux-Donaldson-Katzarkov 2002): elementary interpretation?

Moishezon \Leftrightarrow braiding; modifies $c_1(K_X)$ vs. $[\omega_X]$

Given $f: X \to Y$ symplectic covering with branch curve D, Braiding D / Lagrangian annulus $A \iff$ Luttinger surgery of X / Lagrangian torus $T \subset f^{-1}(A)$.

(i.e. take out a neighborhood of T and glue it back via a symplectomorphism wrapping the meridian around the torus).

Questions:

• are any two symplectic cuspidal plane curves with same (degree, # nodes, # cusps) equivalent under braiding moves?

• are any two compact integral symplectic 4-manifolds with same $(c_1^2, c_2, c_1.[\omega], [\omega]^2)$ equivalent under Luttinger surgeries?

(Remark: many constructions rely on twisted fiber sums or link surgeries, which reduce to Luttinger surgery)