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Symplectic manifolds

A symplectic structure on a smooth manifold is a 2-form ω such that dω = 0 and
ω ∧ · · · ∧ ω is a volume form.

Example: R2n, ω0 =
∑

dxi ∧ dyi.

(Darboux: every symplectic manifold is locally ' (R2n, ω0), i.e. there are no local
invariants).

Example: Riemann surfaces (Σ, volΣ); CPn; complex projective manifolds.

The symplectic category is strictly larger (Thurston 1976).

Gompf 1994: G finitely presented group ⇒ ∃(X4, ω) compact symplectic such that
π1(X) = G.

Symplectic manifolds are not always complex, but they are almost-complex, i.e.
there exists J ∈ End(TX) such that

J2 = −Id, g(u, v) := ω(u, Jv) Riemannian metric.

At any given point (X,ω, J) looks like (Cn, ω0, i), but J is not integrable (∇J 6= 0;
∂̄2 6= 0; no holomorphic coordinates).
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Symplectic topology

Hierarchy of compact oriented 4-manifolds:

COMPLEX PROJ. ( SYMPLECTIC ( SMOOTH

⇒ Classification questions!

Symplectic manifolds retain some (not all!) features of complex proj. manifolds; yet
(almost) every smooth 4-manifold admits a “near-symplectic” structure (sympl. out-
side circles).

Many new developments in the 1990s:

– J-holomorphic curves (Gromov-Witten invariants, Floer homology, ...)

– obstructions to existence of ω in dim. 4 (Taubes: Seiberg-Witten invariants)

– constructions of new examples (symplectic surgeries: Fintushel-Stern, Gompf)

– structure results (e.g., Donaldson: Lefschetz pencils)

Focus of the talk: symplectic branched covers in dimension 4.
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Symplectic branched covers

X4 compact oriented, (Y 4, ωY ) compact symplectic.

f : X → Y is a symplectic branched covering if ∀p ∈ X , ∃ local coordinates

φ : X ⊃ Up → C2 (oriented)
ψ : Y ⊃ Vf(p) → C2 (compatible: ωY (v, iv) > 0)

}

in which f is one of:

• local diffeomorphism: (x, y) 7→ (x, y).
¡
¡
¡

¡
¡
¡

• simple branching: (x, y) 7→ (x2, y).

R : x = 0 f (R) : z1 = 0

• cusp: (x, y) 7→ (x3 − xy, y).

R : y = 3x2 f (R) : 27z21 = 4z32

R = {det(df ) = 0} ⊂ X is the ramification curve (smooth).
D = f (R) is the branch curve (symplectic: ω|TD > 0), with singularities:

complex cusps; nodes (both orientations)

r r+ r−

Proposition. X carries a natural symplectic structure.
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Branched covers of CP2

Proposition. f :X4→ (Y 4, ωY ) symplectic branched cover⇒ X carries a natural

symplectic structure.

[ωX ] = [f ∗ωY ], ωX is canonical up to symplectomorphism.

Theorem. (X4, ω) compact symplectic, [ω] ∈ H2(X,Z) ⇒ X can be realized as

symplectic branched cover of CP2.

∃ fk : X → CP2, inducing ωk ∼ kω, canonical up to isotopy for k À 0. The topology
of fk, e.g. the branch curve Dk ⊂ CP2, yields invariants of (X,ω).

Tool: “approx. hol. geometry”: sections of L⊗k, c1(L
⊗k) = k[ω], with |∂̄s|C0 ¿ |∂s|C0.

Dk ⊂ CP2 symplectic, with generic singularities = complex cusps, and nodes (both
orientations)
Theorem ⇒ up to cancellation of pairs of nodes, the topology of Dk is a symplectic
invariant (if k large).

⇐⇒
q+ q−
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Topological invariants

X
N :1
−→

CP2
D

r
r

γi

Topological data for a branched cover of CP2:

1) Branch curve: D ⊂ CP2 (up to isotopy and node cancellations).

2) Monodromy: θ : π1(CP2−D)³ SN (N = deg f ) (maps γi to transpositions).

D and θ determine (X,ω) up to symplectomorphism.
⇒ In principle it is enough to understand plane curves !

Fact: D is isotopic to a complex curve (up to node cancellations) iff X is Kähler
(complex projective).

⇒ study the symplectic isotopy problem.
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The topology of plane curves

(Moishezon-Teicher; Auroux-Katzarkov)

Perturbation ⇒ D = singular branched cover of CP1.

?
π : (x0 : x1 : x2) 7→ (x0 : x1)

CP1

CP2 − {∞} D

degD = d

r r r

r r r
γi

Monodromy = ρ : π1(C− {pts})→ Bd (braid group)

⇒D is described by a “braid group factorization” (involving cusps, nodes, tangencies).

The braid factorization characterizes D completely (and gives a combinatorial de-
scription of sympl. manifolds)

Problem: can compute for examples, but can’t compare.
⇒ more manageable (incomplete) invariant ?
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Stabilized fundamental groups

(Auroux-Donaldson-Katzarkov-Yotov 2002)

Question (Zariski...): D sing. plane curve, π1(CP2 −D) = ?

Moishezon-Teicher: π1(CP2 −D) to study complex surfaces.

π1(CP2 −D) is related to the braid factorization. (Zariski-van Kampen theorem)

Belief: for high degree branch curves, π1(CP2−D) is determined in a simple manner
by the topology of X?

Symplectic stabilization of π1(CP2−D): adding nodes (in manner compatible with
θ : π1(CP2 −D)→ SN) introduces commutation relations
⇒ quotient by subgroup K = 〈[γ, γ ′], γ, γ ′ geom. generators, θ(γ), θ(γ ′) disjoint〉.

Theorem. For k À 0, Gk(X,ω) = π1(CP2 −Dk)/Kk is a symplectic invariant.
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Stabilized fundamental groups

Fact: 1 −→ G0
k −→ Gk

(θk,δk)−→ SN × Zd −→ Z2 −→ 1.

(N = deg fk, d = degDk; θk = monodromy, δk = linking map)

Theorem. If π1(X) = 1 then we have a natural surjection φk : AbG0
k → (Z2/Λk)

N−1

Λk = {(k[ω] · C,KX · C), C ∈ H2(X,Z)}.

Known examples: (for k À 0)

• CP2, CP1 × CP1 (Moishezon)
• some rational surfaces and K3’s (Robb; Teicher et al.)
• Hirzebruch surfaces, double covers of CP1 × CP1 (ADKY)

⇒ Conjectures: for k À 0,

1) X alg. surface ⇒ Kk = {1} and Gk = π1(CP2 −Dk).
2) π1(X) = 1 ⇒ φk is an isomorphism.
3) π1(X) = 1 ⇒ [G0

k, G
0
k] = quotient of Z2 × Z2.
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Isotopy results for plane curves

When is a (singular) symplectic curve in CP2 (or a complex surface) isotopic to a
complex curve?

• Gromov (1985): every smooth symplectic curve of degree 1 or 2 in CP2 is isotopic
to a complex curve.

(Tool: pseudo-holomorphic curves)

• Siebert-Tian (2002): smooth sympl. curves of degree ≤ 17 in CP2; connected curves
of degree ≤ 7 in Hirzebruch surfaces.

• Barraud (2000), Shevchishin (2002): certain simple singular configurations in CP2.

• Francisco (2004): singular curves of degree d ≤ 9 with m cusps in CP2 (if d ≥ 6,
assume 4(d− 6)− 1 ≤ m < 3d/2).

(in classification of branched covers, these are cases without any non-Kähler examples)
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Stable isotopy results

D,D′ symplectic (“Hurwitz”) curves in CP2 or Hirzebruch surfaces, [D] = [D′], same
numbers of nodes, cusps, (An-sings.):

• Kharlamov-Kulikov (2003) ⇒ after adding sufficiently many lines (fibers) to D,D ′

and smoothing the intersections, D,D′ become isotopic.

• A.-Kulikov-Shevchishin (2004): D,D′ are isotopic up to creations/cancellations of
pairs of nodes.

⇐⇒
q+ q−

(in general, not compatible with branched covers!)

For branched covers:

• (2002): X genus 2 Lefschetz fibration ⇒ X becomes complex projective after sta-
bilization by fiber sums with rational surfaces along genus 2 curves.

(extends to hyperelliptic Lefschetz fibrations; what about the general case?)

Conjecture: two compact integral symplectic 4-manifolds with same (c21, c2, c1.[ω], [ω]
2)

become symplectomorphic after blow-ups and fiber sums with holomorphic fibrations.
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Non-isotopy phenomena

• Fintushel-Stern (1999), Smith (2001): infinitely many non-isotopic smooth connected
symplectic curves in certain 4-manifolds (multiples of classes of square zero).

Use braiding constructions on parallel copies; distinguish using topology of branched
covers (SW invariants, . . . )

• Etgu-Park, Vidussi (2001-2004)

• Moishezon (1992): infinitely many non-isotopic sing. sympl. curves in CP2 (fixed
number of cusp and node singularities).
Use braid monodromy and π1 of complement (hard!)

(Auroux-Donaldson-Katzarkov 2002): elementary interpretation?

Moishezon ⇔ braiding; modifies c1(KX) vs. [ωX ]

A

D D̃
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Given f : X → Y symplectic covering with branch curve D,

Braiding D / Lagrangian annulus A ⇐⇒
Luttinger surgery of X / Lagrangian torus T ⊂ f−1(A).

(i.e. take out a neighborhood of T and glue it back via a symplectomorphism wrapping
the meridian around the torus).

Questions:

• are any two symplectic cuspidal plane curves with same (degree, # nodes, # cusps)
equivalent under braiding moves?

• are any two compact integral symplectic 4-manifolds with same (c21, c2, c1.[ω], [ω]
2)

equivalent under Luttinger surgeries?

(Remark: many constructions rely on twisted fiber sums or link surgeries, which reduce to Luttinger surgery)
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