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Symplectic 4-manifolds

A (compact) symplectic 4-manifold (M 4, ω) is a smooth 4-
manifold with a symplectic form ω ∈ Ω2(M), closed (dω = 0)
and non-degenerate (ω ∧ ω > 0 everywhere).

Local model (Darboux): R4, ω0 = dx1 ∧ dy1 + dx2 ∧ dy2.

E.g.: (CPn, ω0 = i∂∂̄ log ‖z‖2) ⊃ complex projective surfaces.

The symplectic category is strictly larger
(Thurston 1976, Gompf 1994).

Symplectic manifolds are not always complex, but they are
almost-complex, i.e. there exists J ∈ End(TM) such that

J2 = −Id, g(u, v) := ω(u, Jv) Riemannian metric.

At any given point (M,ω, J) looks like (Cn, ω0, i), but J is
not integrable (∇J 6= 0; ∂̄2 6= 0; no holomorphic coordinates).

Hierarchy of compact oriented 4-manifolds:

COMPLEX PROJ. ( SYMPLECTIC ( SMOOTH

⇒ Classification problems.

Symplectic manifolds retain some (not all!) features of com-
plex proj. manifolds; yet (almost) every smooth 4-manifold
admits a “near-symplectic” structure (sympl. outside circles).
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Lefschetz fibrations

A Lefschetz fibration is a C∞ map f : M 4 → S2 with iso-
lated non-degenerate crit. pts, where (in oriented coordinates)
f (z1, z2) ∼ z21 + z22. (⇒ sing. fibers are nodal)

s s

f

M

S2 s × ×

Monodromy around sing. fiber = Dehn twist

vanishing cycle

Gompf: Assuming [fiber] non-torsion in H2(M), M carries
a symplectic form s.t. ω|fiber > 0, unique up to deformation.

(extends Thurston’s result on symplectic fibrations)

Donaldson: Any compact symplectic (X4, ω) admits a sym-
plectic Lefschetz pencil f : X \ {base} → CP1; blowing up

base points, get a sympl. Lefschetz fibration f̂ : X̂ → S2 with
distinguished −1-sections.

(extends classical alg. geometry (Lefschetz); uses “approx. hol. geometry”)

(f = s0/s1, si ∈ C
∞(X,L⊗k), L “ample”, sup |∂̄si| ¿ sup |∂si|)
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Monodromy

r r

f

M

S2 r × ××γ1

γr

Monodromy around sing. fiber = Dehn twist

vanishing cycle

Monodromy: ψ : π1(S
2 \ {p1, . . . , pr})→ Mapg

Mapg = π0Diff+(Σg) is the genus g mapping class group.

Mapg is generated by Dehn twists.

E.g. for T 2 = R2/Z2: Map1 = SL(2,Z); τa =

(

1 1

0 1

)

, τb =

(

1 0

−1 1

)

Choose an ordered basis 〈γ1, . . . , γr〉 for π1(S
2 \ {pi})

⇒ factorization of Id as product of positive Dehn twists:

(τ1, . . . , τr) ∈ Mapg, τi = ψ(γi),
∏

τi = 1.

If g ≥ 2 then the factorization τ1 · . . . · τr = 1 determines the
fibration f up to isotopy.

•With n distinguished sections: ψ̂ : π1(R2 \ {pi})→ Mapg,n
Mapg,n = π0Diff+(Σ, ∂Σ) genus g with n boundaries.

⇒ τ1 · . . . · τr = δ (monodromy at ∞ = boundary twist).
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Factorizations

Two natural equivalence relations on factorizations:

1. Global conjugation (change of trivialization of reference fiber)

(τ1, . . . , τr) ∼ (φτ1φ
−1, . . . , φτrφ

−1) ∀φ ∈ Mapg

2. Hurwitz equivalence (change of ordered basis 〈γ1, . . . , γr〉)

(τ1, . . . , τi, τi+1, . . . τr) ∼ (τ1, . . . , τi+1, τ
−1
i+1τiτi+1, . . . , τr)

∼ (τ1, . . . , τiτi+1τ
−1
i , τi, . . . , τr)

(generates braid group action on r-tuples)

s

× × × ×. . . . . .

γ1 γr

γi γi+1
∼

s

× × × ×. . . . . .

γ1 γr

γ−1
i+1γiγi+1

γi+1

{ genus g Lefschetz fibrations with n sections } / isotopy

↑
↓ 1-1

{

factorizations in Mapg,n
δ =
∏

(pos. Dehn twists)

} /

Hurwitz equiv.
+ global conj.

⇒ Classification of

{

Lefschetz fibrations ?

Mapg,n factorizations ?
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Branched covers of CP2

(D.A. ’99, D.A.-Katzarkov ’00–’02)

(extends work of Zariski, Moishezon-Teicher, . . . on alg. surfaces)

Alternative description of symplectic 4-manifolds:
f : X → CP2 branched covering, with crit. pts. modelled on

• simple branching: (x, y) 7→ (x2, y).

• cusp: (x, y) 7→ (x3 − xy, y).

Branch curve: D = crit(f ) ⊂ CP2 symplectic curve with
(complex) cusp and (+/−) node singularities.

X
n:1
−→

CP2
D

degD = d

L

r rr
γi

?
π : (x0 : x1 : x2) 7→ (x0 : x1)

CP1 r r r
⇒ another combinatorial description of sympl. 4-manifolds:

1) Branch curve: D ⊂ CP2

Braid monodromy = ρ : π1(C−{pts})→ Bd (braid group)

⇒ D is described by a (liftable) braid group factorization
(involving cusps, nodes, tangencies)

2) Monodromy: θ : π1(CP2 −D)→ Sn (n = deg f)

(surjective, maps γi to transpositions)
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Classification of Lefschetz fibrations

• g = 0, 1: classical (genus 1: Moishezon-Livne).
These are always isotopic to holomorphic fibrations.

In Map1: (τa · τb)
6k = 1 τa =

(

1 1
0 1

)

, τb =

(

1 0
−1 1

)

• g = 2, assuming no reducible sing. fibers:

s

reducible

s

irreducible

Conj.: always isotopic to holomorphic fibrations, i.e. one of:

(τ1 · τ2 · τ3 · τ4 · τ5 · τ5 · τ4 · τ3 · τ2 · τ1)
2k = 1

(τ1 · τ2 · τ3 · τ4 · τ5)
6k = 1

(τ1 · τ2 · τ3 · τ4)
10k = 1 τ1 τ5

τ2 τ4τ3

Proved by Siebert-Tian (2003) under a technical assumption.

(Method: pseudo-holomorphic curves)

• g ≥ 3 (or g = 2 with reducible sing. fibers):

Various infinite families of Lefschetz fibrations not isotopic
to any holomorphic fibration!

(Ozbagci-Stipsicz, Smith, Fintushel-Stern, Korkmaz, ...)

Can we understand anything?
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Fiber sums

f : M → S2, f ′ : M ′ → S2 genus g Lefschetz fibrations.
Fix a diffeomorphism between smooth fibers.

⇒ fiber sum f # f ′ (fiberwise connected sum)

r r

f f ′

M M ′

S2 S2× ×

For factorizations:
(τ1, . . . , τr), (τ

′
1, . . . , τ

′
s) 7→ (τ1, . . . , τr, τ

′
1, . . . , τ

′
s).

Classification up to fiber sums: (D.A., ’04)

∀g there is a genus g Lefschetz fibration f 0
g such that:

∀ f1 : M1 → S2, f2 : M2 → S2 genus g Lefschetz fibrations,

if











χ(M1) = χ(M2), σ(M1) = σ(M2)

f1, f2 have same #’s of reducible fibers of each type

f1, f2 have sections of same self-intersection

then ∀nÀ 0, f1#n f 0
g ' f2#n f 0

g .
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Positive factorizations

The proof relies on the following result:

Let G = 〈g1, . . . , gk | r1, . . . , rl〉 finitely presented group, and
δ ∈ G a central element.

Assume there exist factorizations F1, . . . ,Fm of δ such that:

• all factors in Fi are in {g1, . . . , gk};

• every generator gi appears at least once;

• every relation can be written as an equality of positive
words, w = w′ where, viewing w,w′ as factorizations:

– either w,w′ are Hurwitz equivalent

– or w = Fi and w
′ = Fj for some i, j.

Then, given F ′,F ′′ factorizations of a same element in G
s.t. the factors of F ′ are conjugated to those of F ′′ (up to
permutation),

∃n′i, n
′′
i ∈ N s.t. F ′ ·

m
∏

1
F
n′i
i ∼

Hurwitz
F ′′ ·

m
∏

1
F
n′′i
i

We apply this result (+ some topology) to G = Mapg,1.

(There we have 4 factorizations. Relate n′i − n
′′
i to change in χ(M), σ(M)

⇒ if preserved then n′i = n′′i . Finally, take F
0 =

∏

Fi)
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Factorizations in Mapg,1

c1 c3 c5
c2 c4 c6 c2g

c0

Generators: τ0, . . . , τ2g.
Relations:
(i) τiτj = τjτi if ci ∩ cj = ∅, τiτjτi = τjτiτj if ci ∩ cj 6= ∅
(ii) for g ≥ 2 : (τ0τ2τ3τ4)

10 = (τ0τ1τ2τ3τ4)
6

(iii) for g ≥ 3 : (τ0τ1τ2τ3τ4τ5τ6)
9 = (τ0τ2τ3τ4τ5τ6)

12

(i): Hurwitz equivalences;
(ii), (iii): both sides can be completed to factorizations of δ.

Corollary: (M1, ω1), (M2, ω2) compact sympl. 4-manifolds,
[ωi] ∈ H

2(Mi,Z), with same (c21, c2, c1 · [ω], [ω]
2).

⇒ M1,M2 become symplectomorphic after (same) blow-
ups and fiber sums.

Question: can M2 be obtained from M1 by a sequence of
surgeries on Lagrangian tori?

Or: given f1, f2 as in main theorem, are their factorizations
equivalent under Hurwitz moves + partial conjugations?

(τ1, . . . , τi, τi+1, . . . , τr) ∼ (φτ1φ
−1, . . . , φτiφ

−1, τi+1, . . . , τr)
if [φ, τ1 . . . τi] = 1.
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