Symplectic 4-manifolds, mapping class group factorizations, and fiber sums of Lefschetz fibrations

Denis AUROUX

Massachusetts Institute of Technology

Symplectic 4-manifolds

A (compact) symplectic 4-manifold (M^4, ω) is a smooth 4manifold with a symplectic form $\omega \in \Omega^2(M)$, closed $(d\omega = 0)$ and non-degenerate $(\omega \wedge \omega > 0 \text{ everywhere})$.

Local model (Darboux): \mathbb{R}^4 , $\omega_0 = dx_1 \wedge dy_1 + dx_2 \wedge dy_2$. E.g.: $(\mathbb{CP}^n, \omega_0 = i\partial\bar{\partial}\log||z||^2) \supset$ complex projective surfaces. The symplectic category is strictly larger (Thurston 1976, Gompf 1994).

Symplectic manifolds are not always complex, but they are almost-complex, i.e. there exists $J \in \text{End}(TM)$ such that

 $J^2 = -\text{Id}, \quad g(u, v) := \omega(u, Jv)$ Riemannian metric.

At any given point (M, ω, J) looks like $(\mathbb{C}^n, \omega_0, i)$, but J is not integrable $(\nabla J \neq 0; \bar{\partial}^2 \neq 0;$ no holomorphic coordinates).

Hierarchy of compact oriented 4-manifolds:

COMPLEX PROJ. \subsetneq SYMPLECTIC \subsetneq SMOOTH

 \Rightarrow Classification problems.

Symplectic manifolds retain some (not all!) features of complex proj. manifolds; yet (almost) every smooth 4-manifold admits a "near-symplectic" structure (sympl. outside circles).

Lefschetz fibrations

A **Lefschetz fibration** is a C^{∞} map $f: M^4 \to S^2$ with isolated non-degenerate crit. pts, where (in oriented coordinates) $f(z_1, z_2) \sim z_1^2 + z_2^2$. (\Rightarrow sing. fibers are nodal)

Monodromy around sing. fiber = **Dehn twist**

Gompf: Assuming [fiber] non-torsion in $H_2(M)$, M carries a symplectic form s.t. $\omega_{|\text{fiber}} > 0$, unique up to deformation. (extends Thurston's result on symplectic fibrations)

Donaldson: Any compact symplectic (X^4, ω) admits a symplectic Lefschetz pencil $f : X \setminus \{\text{base}\} \to \mathbb{CP}^1$; blowing up base points, get a sympl. Lefschetz fibration $\hat{f} : \hat{X} \to S^2$ with distinguished -1-sections.

(extends classical alg. geometry (Lefschetz); uses "approx. hol. geometry") $(f = s_0/s_1, s_i \in C^{\infty}(X, L^{\otimes k}), L$ "ample", $\sup |\bar{\partial}s_i| \ll \sup |\partial s_i|)$

Monodromy

Monodromy around sing. fiber = **Dehn twist**

Monodromy: $\psi : \pi_1(S^2 \setminus \{p_1, \dots, p_r\}) \to \operatorname{Map}_g$

 $Map_g = \pi_0 \operatorname{Diff}^+(\Sigma_g) \text{ is the genus } g \text{ mapping class group.}$ $Map_g \text{ is generated by Dehn twists.}$ E.g. for $T^2 = \mathbb{R}^2/\mathbb{Z}^2$: $Map_1 = SL(2,\mathbb{Z}); \ \tau_a = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \ \tau_b = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$

Choose an ordered basis $\langle \gamma_1, \ldots, \gamma_r \rangle$ for $\pi_1(S^2 \setminus \{p_i\})$ \Rightarrow factorization of Id as product of positive Dehn twists:

$$(\tau_1,\ldots,\tau_r) \in \operatorname{Map}_g, \quad \tau_i = \psi(\gamma_i), \quad \prod \tau_i = 1.$$

If $g \ge 2$ then the factorization $\tau_1 \cdot \ldots \cdot \tau_r = 1$ determines the fibration f up to isotopy.

• With *n* distinguished sections: $\hat{\psi} : \pi_1(\mathbb{R}^2 \setminus \{p_i\}) \to \operatorname{Map}_{g,n}$ $\operatorname{Map}_{g,n} = \pi_0 \operatorname{Diff}^+(\Sigma, \partial \Sigma)$ genus *g* with *n* boundaries.

 $\Rightarrow \tau_1 \cdot \ldots \cdot \tau_r = \delta$ (monodromy at ∞ = boundary twist).

Factorizations

Two natural equivalence relations on factorizations:

1. Global conjugation (change of trivialization of reference fiber)

 $(\tau_1, \ldots, \tau_r) \sim (\phi \tau_1 \phi^{-1}, \ldots, \phi \tau_r \phi^{-1}) \quad \forall \phi \in \operatorname{Map}_g$

2. Hurwitz equivalence (change of ordered basis $\langle \gamma_1, \ldots, \gamma_r \rangle$)

$$(\tau_1, \ldots, \tau_i, \tau_{i+1}, \ldots, \tau_r) \sim (\tau_1, \ldots, \tau_{i+1}, \tau_{i+1}^{-1} \tau_i \tau_{i+1}, \ldots, \tau_r) \\\sim (\tau_1, \ldots, \tau_i \tau_{i+1} \tau_i^{-1}, \tau_i, \ldots, \tau_r)$$

(generates braid group action on r-tuples)

Branched covers of \mathbb{CP}^2

(D.A. '99, D.A.-Katzarkov '00–'02) (extends work of Zariski, Moishezon-Teicher, ... on alg. surfaces)

Alternative description of symplectic 4-manifolds: $f: X \to \mathbb{CP}^2$ branched covering, with crit. pts. modelled on

- simple branching: $(x, y) \mapsto (x^2, y)$.
- cusp: $(x, y) \mapsto (x^3 xy, y)$.

Branch curve: $D = \operatorname{crit}(f) \subset \mathbb{CP}^2$ symplectic curve with (complex) cusp and (+/-) node singularities.

 \Rightarrow another combinatorial description of sympl. 4-manifolds: 1) Branch curve: $D \subset \mathbb{CP}^2$

Braid monodromy = $\rho : \pi_1(\mathbb{C} - \{ \text{pts} \}) \to B_d$ (braid group)

 $\Rightarrow D$ is described by a (liftable) braid group factorization

(involving cusps, nodes, tangencies)

2) Monodromy:
$$\theta : \pi_1(\mathbb{CP}^2 - D) \to S_n \quad (n = \deg f)$$

(surjective, maps γ_i to transpositions)

Classification of Lefschetz fibrations

- g = 0, 1: classical (genus 1: Moishezon-Livne). These are always isotopic to holomorphic fibrations. In Map₁: $(\tau_a \cdot \tau_b)^{6k} = 1$ $\tau_a = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \tau_b = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$
- g = 2, assuming no reducible sing. fibers:

Conj.: always isotopic to holomorphic fibrations, i.e. one of:

$$(\tau_1 \cdot \tau_2 \cdot \tau_3 \cdot \tau_4 \cdot \tau_5 \cdot \tau_5 \cdot \tau_4 \cdot \tau_3 \cdot \tau_2 \cdot \tau_1)^{2k} = 1$$

$$(\tau_1 \cdot \tau_2 \cdot \tau_3 \cdot \tau_4 \cdot \tau_5)^{6k} = 1$$

$$(\tau_1 \cdot \tau_2 \cdot \tau_3 \cdot \tau_4)^{10k} = 1$$

$$\tau_1 \underbrace{\tau_2 \cdot \tau_3 \cdot \tau_4}^{\tau_2 \cdot \tau_3 \cdot \tau_4} \underbrace{\tau_5}^{\tau_4 \cdot \tau_5 \cdot \tau_5 \cdot \tau_4 \cdot \tau_5} \underbrace{\tau_5}^{\tau_5 \cdot \tau_5 \cdot \tau$$

Proved by Siebert-Tian (2003) under a technical assumption.

(Method: pseudo-holomorphic curves)

• $g \ge 3$ (or g = 2 with reducible sing. fibers):

Various infinite families of Lefschetz fibrations not isotopic to any holomorphic fibration!

(Ozbagci-Stipsicz, Smith, Fintushel-Stern, Korkmaz, ...)

Can we understand anything?

Fiber sums

 $f: M \to S^2, f': M' \to S^2$ genus g Lefschetz fibrations. Fix a diffeomorphism between smooth fibers.

 \Rightarrow fiber sum f # f' (fiberwise connected sum)

For factorizations:

$$(\tau_1,\ldots,\tau_r), (\tau'_1,\ldots,\tau'_s) \mapsto (\tau_1,\ldots,\tau_r,\tau'_1,\ldots,\tau'_s).$$

Classification up to fiber sums: (D.A., '04)

 $\begin{aligned} \forall g \text{ there is a genus } g \text{ Lefschetz fibration } f_g^0 \text{ such that:} \\ \forall f_1: M_1 \to S^2, f_2: M_2 \to S^2 \text{ genus } g \text{ Lefschetz fibrations,} \\ & \left\{ \begin{aligned} \chi(M_1) = \chi(M_2), \ \sigma(M_1) = \sigma(M_2) \\ f_1, f_2 \text{ have same } \#\text{'s of reducible fibers of each type} \\ f_1, f_2 \text{ have sections of same self-intersection} \\ & \text{then } \forall n \gg 0, \ f_1 \# n \ f_g^0 \simeq f_2 \# n \ f_g^0. \end{aligned} \right. \end{aligned}$

Positive factorizations

The proof relies on the following result:

Let $G = \langle g_1, \ldots, g_k | r_1, \ldots, r_l \rangle$ finitely presented group, and $\delta \in G$ a central element.

Assume there exist factorizations $\mathcal{F}_1, \ldots, \mathcal{F}_m$ of δ such that:

- all factors in \mathcal{F}_i are in $\{g_1, \ldots, g_k\};$
- every generator g_i appears at least once;
- every relation can be written as an equality of positive words, w = w' where, viewing w, w' as factorizations:

- either w, w' are Hurwitz equivalent

- or $w = \mathcal{F}_i$ and $w' = \mathcal{F}_j$ for some i, j.

Then, given $\mathcal{F}', \mathcal{F}''$ factorizations of a same element in G s.t. the factors of \mathcal{F}' are conjugated to those of \mathcal{F}'' (up to permutation),

$$\exists n'_i, n''_i \in \mathbb{N} \text{ s.t. } \mathcal{F}' \cdot \prod_{1}^{m} \mathcal{F}_i^{n'_i} \underset{\text{Hurwitz}}{\sim} \mathcal{F}'' \cdot \prod_{1}^{m} \mathcal{F}_i^{n''_i}$$

We apply this result (+ some topology) to $G = \operatorname{Map}_{g,1}$. (There we have 4 factorizations. Relate $n'_i - n''_i$ to change in $\chi(M)$, $\sigma(M)$ \Rightarrow if preserved then $n'_i = n''_i$. Finally, take $\mathcal{F}^0 = \prod \mathcal{F}_i$)

Factorizations in $Map_{q,1}$

Generators: $\tau_0, \ldots, \tau_{2g}$. Relations:

(*i*)
$$\tau_i \tau_j = \tau_j \tau_i$$
 if $c_i \cap c_j = \emptyset$, $\tau_i \tau_j \tau_i = \tau_j \tau_i \tau_j$ if $c_i \cap c_j \neq \emptyset$
(*ii*) for $g \ge 2$: $(\tau_0 \tau_2 \tau_3 \tau_4)^{10} = (\tau_0 \tau_1 \tau_2 \tau_3 \tau_4)^6$
(*iii*) for $g \ge 3$: $(\tau_0 \tau_1 \tau_2 \tau_3 \tau_4 \tau_5 \tau_6)^9 = (\tau_0 \tau_2 \tau_3 \tau_4 \tau_5 \tau_6)^{12}$

(i): Hurwitz equivalences;

(ii), (iii): both sides can be completed to factorizations of δ .

Corollary: $(M_1, \omega_1), (M_2, \omega_2)$ compact sympl. 4-manifolds, $[\omega_i] \in H^2(M_i, \mathbb{Z})$, with same $(c_1^2, c_2, c_1 \cdot [\omega], [\omega]^2)$.

 $\Rightarrow M_1, M_2$ become symplectomorphic after (same) blowups and fiber sums.

Question: can M_2 be obtained from M_1 by a sequence of surgeries on Lagrangian tori?

Or: given f_1, f_2 as in main theorem, are their factorizations equivalent under Hurwitz moves + partial conjugations?

 $(\tau_1, \ldots, \tau_i, \tau_{i+1}, \ldots, \tau_r) \sim (\phi \tau_1 \phi^{-1}, \ldots, \phi \tau_i \phi^{-1}, \tau_{i+1}, \ldots, \tau_r)$ if $[\phi, \tau_1 \ldots \tau_i] = 1$.