Symplectic 4-manifolds, mapping class group factorizations, and fiber sums of Lefschetz fibrations

Denis AUROUX

Massachusetts Institute of Technology

Symplectic 4-manifolds

A (compact) symplectic 4-manifold $\left(M^{4}, \omega\right)$ is a smooth 4manifold with a symplectic form $\omega \in \Omega^{2}(M)$, closed $(d \omega=0)$ and non-degenerate ($\omega \wedge \omega>0$ everywhere).

Local model (Darboux): $\mathbb{R}^{4}, \omega_{0}=d x_{1} \wedge d y_{1}+d x_{2} \wedge d y_{2}$. E.g.: $\left(\mathbb{C P}^{n}, \omega_{0}=i \partial \bar{\partial} \log \|z\|^{2}\right) \supset$ complex projective surfaces. The symplectic category is strictly larger
(Thurston 1976, Gompf 1994).

Symplectic manifolds are not always complex, but they are almost-complex, i.e. there exists $J \in \operatorname{End}(T M)$ such that $J^{2}=-\mathrm{Id}, \quad g(u, v):=\omega(u, J v)$ Riemannian metric.
At any given point (M, ω, J) looks like $\left(\mathbb{C}^{n}, \omega_{0}, i\right)$, but J is not integrable ($\nabla J \neq 0 ; \bar{\partial}^{2} \neq 0$; no holomorphic coordinates).

Hierarchy of compact oriented 4-manifolds:
COMPLEX PROJ. \subsetneq SYMPLECTIC \subsetneq SMOOTH
\Rightarrow Classification problems.
Symplectic manifolds retain some (not all!) features of complex proj. manifolds; yet (almost) every smooth 4-manifold admits a "near-symplectic" structure (sympl. outside circles).

Lefschetz fibrations

A Lefschetz fibration is a C^{∞} map $f: M^{4} \rightarrow S^{2}$ with isolated non-degenerate crit. pts, where (in oriented coordinates) $f\left(z_{1}, z_{2}\right) \sim z_{1}^{2}+z_{2}^{2} . \quad(\Rightarrow$ sing. fibers are nodal)

Gompf: Assuming [fiber] non-torsion in $H_{2}(M), M$ carries a symplectic form s.t. $\omega_{\text {lfiber }}>0$, unique up to deformation. (extends Thurston's result on symplectic fibrations)
Donaldson: Any compact symplectic $\left(X^{4}, \omega\right)$ admits a symplectic Lefschetz pencil $f: X \backslash\{$ base $\} \rightarrow \mathbb{C P}^{1}$; blowing up base points, get a sympl. Lefschetz fibration $\hat{f}: \hat{X} \rightarrow S^{2}$ with distinguished -1 -sections.
(extends classical alg. geometry (Lefschetz); uses "approx. hol. geometry")

$$
\left(f=s_{0} / s_{1}, s_{i} \in C^{\infty}\left(X, L^{\otimes k}\right), L " a m p l e ", \sup \left|\bar{\partial} s_{i}\right| \ll \sup \left|\partial s_{i}\right|\right)
$$

Monodromy

Monodromy around sing. fiber $=$ Dehn twist

Monodromy: $\psi: \pi_{1}\left(S^{2} \backslash\left\{p_{1}, \ldots, p_{r}\right\}\right) \rightarrow$ Map $_{g}$

$\operatorname{Map}_{g}=\pi_{0} \operatorname{Diff}^{+}\left(\Sigma_{g}\right)$ is the genus g mapping class group. Map $_{g}$ is generated by Dehn twists.
E.g. for $T^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}: \operatorname{Map}_{1}=S L(2, \mathbb{Z}) ; \tau_{a}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right), \tau_{b}=\left(\begin{array}{rr}1 & 0 \\ -1 & 1\end{array}\right)$

Choose an ordered basis $\left\langle\gamma_{1}, \ldots, \gamma_{r}\right\rangle$ for $\pi_{1}\left(S^{2} \backslash\left\{p_{i}\right\}\right)$
\Rightarrow factorization of Id as product of positive Dehn twists:

$$
\left(\tau_{1}, \ldots, \tau_{r}\right) \in \operatorname{Map}_{g}, \quad \tau_{i}=\psi\left(\gamma_{i}\right), \quad \prod \tau_{i}=1
$$

If $g \geq 2$ then the factorization $\tau_{1} \cdot \ldots \cdot \tau_{r}=1$ determines the fibration f up to isotopy.

- With n distinguished sections: $\hat{\psi}: \pi_{1}\left(\mathbb{R}^{2} \backslash\left\{p_{i}\right\}\right) \rightarrow \operatorname{Map}_{g, n}$ $\operatorname{Map}_{g, n}=\pi_{0} \operatorname{Diff}^{+}(\Sigma, \partial \Sigma)$ genus g with n boundaries.
$\Rightarrow \tau_{1} \cdot \ldots \cdot \tau_{r}=\delta \quad$ (monodromy at $\infty=$ boundary twist).

Factorizations

Two natural equivalence relations on factorizations:

1. Global conjugation (change of trivialization of reference fiber)

$$
\left(\tau_{1}, \ldots, \tau_{r}\right) \sim\left(\phi \tau_{1} \phi^{-1}, \ldots, \phi \tau_{r} \phi^{-1}\right) \quad \forall \phi \in \operatorname{Map}_{g}
$$

2. Hurwitz equivalence (change of ordered basis $\left\langle\gamma_{1}, \ldots, \gamma_{r}\right\rangle$)

$$
\begin{aligned}
\left(\tau_{1}, \ldots, \tau_{i}, \tau_{i+1}, \ldots \tau_{r}\right) & \sim\left(\tau_{1}, \ldots, \tau_{i+1}, \tau_{i+1}^{-1} \tau_{i} \tau_{i+1}, \ldots, \tau_{r}\right) \\
& \sim\left(\tau_{1}, \ldots, \tau_{i} \tau_{i+1} \tau_{i}^{-1}, \tau_{i}, \ldots, \tau_{r}\right)
\end{aligned}
$$

(generates braid group action on r-tuples)

\{ genus g Lefschetz fibrations with n sections $\}$ / isotopy

$$
\uparrow 1-1
$$

$\left\{\begin{array}{c}\text { factorizations in } \text { Map }_{g, n} \\ \delta=\prod(\text { pos. Dehn twists })\end{array}\right\} / \begin{gathered}\text { Hurwitz equiv. } \\ + \text { global conj. }\end{gathered}$
\Rightarrow Classification of $\left\{\begin{array}{l}\text { Lefschetz fibrations } \text { ? } \\ \operatorname{Map}_{g, n} \text { factorizations } ?\end{array}\right.$

Branched covers of $\mathbb{C P}^{2}$

(D.A. '99, D.A.-Katzarkov '00-'02)
(extends work of Zariski, Moishezon-Teicher, ... on alg. surfaces)
Alternative description of symplectic 4-manifolds:
$f: X \rightarrow \mathbb{C P}^{2}$ branched covering, with crit. pts. modelled on

- simple branching: $(x, y) \mapsto\left(x^{2}, y\right)$.

- cusp: $(x, y) \mapsto\left(x^{3}-x y, y\right)$.

Branch curve: $D=\operatorname{crit}(f) \subset \mathbb{C P}^{2}$ symplectic curve with (complex) cusp and $(+/-)$ node singularities.

\Rightarrow another combinatorial description of sympl. 4-manifolds:

1) Branch curve: $D \subset \mathbb{C P}^{2}$

Braid monodromy $=\rho: \pi_{1}(\mathbb{C}-\{$ pts $\}) \rightarrow B_{d}($ braid group $)$
$\Rightarrow D$ is described by a (liftable) braid group factorization (involving cusps, nodes, tangencies)
2) Monodromy: $\theta: \pi_{1}\left(\mathbb{C P}^{2}-D\right) \rightarrow S_{n} \quad(n=\operatorname{deg} f)$
(surjective, maps γ_{i} to transpositions)

Classification of Lefschetz fibrations

- $g=0,1$: classical (genus 1: Moishezon-Livne).

These are always isotopic to holomorphic fibrations.
In Map $\mathrm{Ma}_{1}:\left(\tau_{a} \cdot \tau_{b}\right)^{6 k}=1 \quad \tau_{a}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right), \tau_{b}=\left(\begin{array}{rr}1 & 0 \\ -1 & 1\end{array}\right)$

- $g=2$, assuming no reducible sing. fibers:

irreducible

reducible

Conj.: always isotopic to holomorphic fibrations, i.e. one of:

Proved by Siebert-Tian (2003) under a technical assumption.
(Method: pseudo-holomorphic curves)

- $g \geq 3$ (or $g=2$ with reducible sing. fibers):

Various infinite families of Lefschetz fibrations not isotopic to any holomorphic fibration!
(Ozbagci-Stipsicz, Smith, Fintushel-Stern, Korkmaz, ...)
Can we understand anything?

Fiber sums

$f: M \rightarrow S^{2}, f^{\prime}: M^{\prime} \rightarrow S^{2}$ genus g Lefschetz fibrations. Fix a diffeomorphism between smooth fibers.
\Rightarrow fiber sum $f \# f^{\prime}$ (fiberwise connected sum)

For factorizations:

$$
\left(\tau_{1}, \ldots, \tau_{r}\right),\left(\tau_{1}^{\prime}, \ldots, \tau_{s}^{\prime}\right) \mapsto\left(\tau_{1}, \ldots, \tau_{r}, \tau_{1}^{\prime}, \ldots, \tau_{s}^{\prime}\right)
$$

Classification up to fiber sums: (D.A., '04)
$\forall g$ there is a genus g Lefschetz fibration f_{g}^{0} such that:
$\forall f_{1}: M_{1} \rightarrow S^{2}, f_{2}: M_{2} \rightarrow S^{2}$ genus g Lefschetz fibrations,
$\left\{\chi\left(M_{1}\right)=\chi\left(M_{2}\right), \sigma\left(M_{1}\right)=\sigma\left(M_{2}\right)\right.$
if $\left\{f_{1}, f_{2}\right.$ have same \#'s of reducible fibers of each type (f_{1}, f_{2} have sections of same self-intersection then $\forall n \gg 0, f_{1} \# n f_{g}^{0} \simeq f_{2} \# n f_{g}^{0}$.

Positive factorizations

The proof relies on the following result:
Let $G=\left\langle g_{1}, \ldots, g_{k} \mid r_{1}, \ldots, r_{l}\right\rangle$ finitely presented group, and $\delta \in G$ a central element.
Assume there exist factorizations $\mathcal{F}_{1}, \ldots, \mathcal{F}_{m}$ of δ such that:

- all factors in \mathcal{F}_{i} are in $\left\{g_{1}, \ldots, g_{k}\right\}$;
- every generator g_{i} appears at least once;
- every relation can be written as an equality of positive words, $w=w^{\prime}$ where, viewing w, w^{\prime} as factorizations:
- either w, w^{\prime} are Hurwitz equivalent
- or $w=\mathcal{F}_{i}$ and $w^{\prime}=\mathcal{F}_{j}$ for some i, j.

Then, given $\mathcal{F}^{\prime}, \mathcal{F}^{\prime \prime}$ factorizations of a same element in G s.t. the factors of \mathcal{F}^{\prime} are conjugated to those of $\mathcal{F}^{\prime \prime}$ (up to permutation),

$$
\exists n_{i}^{\prime}, n_{i}^{\prime \prime} \in \mathbb{N} \text { s.t. } \mathcal{F}^{\prime} \cdot \prod_{1}^{m} \mathcal{F}_{i}^{n_{i}^{\prime}} \underset{\text { Hurwitz }}{\sim} \mathcal{F}^{\prime \prime} \cdot \prod_{1}^{m} \mathcal{F}_{i}^{n_{i}^{\prime \prime}}
$$

We apply this result (+ some topology) to $G=\operatorname{Map}_{g, 1}$.
(There we have 4 factorizations. Relate $n_{i}^{\prime}-n_{i}^{\prime \prime}$ to change in $\chi(M), \sigma(M)$
\Rightarrow if preserved then $n_{i}^{\prime}=n_{i}^{\prime \prime}$. Finally, take $\left.\mathcal{F}^{0}=\prod \mathcal{F}_{i}\right)$

Factorizations in $\operatorname{Map}_{g, 1}$

Generators: $\tau_{0}, \ldots, \tau_{2 g}$.
Relations:
(i) $\tau_{i} \tau_{j}=\tau_{j} \tau_{i}$ if $c_{i} \cap c_{j}=\emptyset, \tau_{i} \tau_{j} \tau_{i}=\tau_{j} \tau_{i} \tau_{j}$ if $c_{i} \cap c_{j} \neq \emptyset$
(ii) for $g \geq 2:\left(\tau_{0} \tau_{2} \tau_{3} \tau_{4}\right)^{10}=\left(\tau_{0} \tau_{1} \tau_{2} \tau_{3} \tau_{4}\right)^{6}$
(iii) for $g \geq 3:\left(\tau_{0} \tau_{1} \tau_{2} \tau_{3} \tau_{4} \tau_{5} \tau_{6}\right)^{9}=\left(\tau_{0} \tau_{2} \tau_{3} \tau_{4} \tau_{5} \tau_{6}\right)^{12}$
(i): Hurwitz equivalences;
(ii), (iii): both sides can be completed to factorizations of δ.

Corollary: $\left(M_{1}, \omega_{1}\right),\left(M_{2}, \omega_{2}\right)$ compact sympl. 4-manifolds, $\left[\omega_{i}\right] \in H^{2}\left(M_{i}, \mathbb{Z}\right)$, with same $\left(c_{1}^{2}, c_{2}, c_{1} \cdot[\omega],[\omega]^{2}\right)$.
$\Rightarrow M_{1}, M_{2}$ become symplectomorphic after (same) blowups and fiber sums.

Question: can M_{2} be obtained from M_{1} by a sequence of surgeries on Lagrangian tori?
Or: given f_{1}, f_{2} as in main theorem, are their factorizations equivalent under Hurwitz moves + partial conjugations?
$\left(\tau_{1}, \ldots, \tau_{i}, \tau_{i+1}, \ldots, \tau_{r}\right) \sim\left(\phi \tau_{1} \phi^{-1}, \ldots, \phi \tau_{i} \phi^{-1}, \tau_{i+1}, \ldots, \tau_{r}\right)$
if $\left[\phi, \tau_{1} \ldots \tau_{i}\right]=1$.

