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Mirror symmetry for Calabi-Yau manifolds

Symplectic geometry (A) Complex geometry (B)

(X , J, ω,Ω) Calabi-Yau
Gromov-Witten invariants
Lagrangian submanifolds

Fukaya category

(X∨, J∨, ω∨,Ω∨) Calabi-Yau
Variations of Hodge structure

Analytic cycles
Derived category of coherent sheaves

Geometry: Strominger-Yau-Zaslow conjecture

(+Kontsevich-Soibelman, Gross-Siebert, Fukaya, ...)

X , X∨ are dual fibrations by special Lagrangian tori over a base carrying
an integral affine structure.*

* Actual examples are hard to come by. SYZ seems to hold only near the “large complex structure limit”.
There are singularities in codimension 2, and these induce “quantum corrections”. Etc...
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Landau-Ginzburg models

When c1(X ) 6= 0, the mirror is a Landau-Ginzburg model W : M → C

(M noncompact; W = superpotential, holomorphic)

Symplectic/complex geometry of X ⇔ complex/symplectic geometry of
singular fibers of W .

Question: how to construct W : M → C?

If X toric: M = (C∗)n, W = Laurent polynomial.

X = CP
2

∆

(0, 1)

(1, 0)

(−1,−1)

M = (C∗)2,

W = z1 + z2 +
e−Λ

z1z2
(Λ =

∫

CP1 ω)

(In general, W =
∑

F facet

e−2πα(F ) zν(F ) where eqn. of F is 〈ν(F ), φ〉 = α(F ).)
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A rough conjecture

Conjecture

(X , ω, J) compact Kähler manifold, D ⊂ X anticanonical divisor,
Ω ∈ Ωn,0(X \ D) ⇒ can construct a mirror as

M = moduli space of special Lagrangian tori L ⊂ X \ D

+ flat U(1) connections on trivial bundle over L

W : M → C counts holomorphic discs of Maslov index 2 in (X , L)
(Fukaya-Oh-Ohta-Ono’s m0 obstruction in Floer homology)

the fiber of W is mirror to D.

Conjecture doesn’t quite hold as stated. Mainly:

W presents wall-crossing discontinuities caused by Maslov index 0
discs ⇒ need “quantum corrections” to correct these discontinuities.

According to Hori-Vafa, need to enlarge M by “renormalization”.
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Special Lagrangians

(X , ω, J) compact Kähler manifold, dimC X = n.
σ ∈ H0(K−1

X
), D = σ−1(0), Ω = σ−1 ∈ Ωn,0(X \ D).

Definition

Ln ⊂ X \D is special Lagrangian if ω|L = 0 and Im(e−iφΩ)|L = 0. (φ =cst)

Proposition

Special Lagrangian deformations = H1
ψ(L) (≃ H1(L,R)), unobstructed.

H1
ψ(L) = {θ ∈ Ω1(L,R) | dθ = 0, d∗(ψθ) = 0} “ψ-harmonic” 1-forms

where ψ = Re(e−iφΩ)|L/vol(g|L) ∈ C∞(L,R+).

v ∈ C∞(NL) is SLag iff −ιvω = θ and ιv Im(e−iφΩ) = ψ ∗ θ are closed.
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The geometry of the moduli space

Definition

M = {(L,∇) | L ⊂ X \D special Lag. torus, ∇ flat U(1) conn. on C → L}.

Proposition

T(L,∇)M = {(v , α) ∈ C∞(NL)⊕Ω1(L,R) | − ιvω+ iα ∈ H1
ψ(L)⊗C}.

Complex structure J∨ on M; local holomorphic functions:

given β ∈ H2(X , L), zβ = exp(−
∫

β
ω) hol∂β(∇) : M → C

∗.

Compatible Kähler form

ω∨((v1, α1), (v2, α2)) =
∫

L
α2 ∧ ιv1 Im e−iφΩ − α1 ∧ ιv2 Im e−iφΩ.

Holom. volume form

Ω∨((v1, α1), . . . , (vn, αn)) =
∫

L
(−ιv1ω + iα1) ∧ · · · ∧ (−ιvn

ω + iαn).

⇒ Assuming ψ-harmonic 1-forms on L have no zeroes, X and M are dual
special Lag. torus fibrations in a nbd. of L (the projection is (L,∇) 7→ L).
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The superpotential

β ∈ π2(X , L) ⇒ moduli space of holom. maps u : (D2, ∂D2) → (X , L) in
class β, of virt. dim. n− 3 +µ(β), where µ(β) = 2#(β ∩D) Maslov index.

Assumption

L does not bound any nonconstant Maslov index 0 holomorphic discs;
Maslov index 2 discs are regular.

Then for µ(β) = 2, can count holom. discs in class β whose boundary
passes through a generic given point p ∈ L ⇒ nβ(L) ∈ Z.

Definition

W (L,∇) =
∑

µ(β)=2

nβ(L) zβ , where zβ = exp(−
∫

β
ω) hol∂β(∇).

By construction W : M → C is holomorphic. (Convergence OK at least if X Fano)
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The toric case (see also Cho-Oh)

X smooth toric variety with moment map φ : X → R
n, ∆ = φ(X ).

D = φ−1(∂∆) toric divisor, X \ D ≃ (C∗)n, Ω = d log x1 ∧ · · · ∧ d log xn.

Toric fibers (T n-orbits) are special Lagrangian.

M is biholomorphic to  Log−1(int ∆) ⊂ (C∗)n,
where  Log(z1, . . . , zn) = 1

2π (log |z1|, . . . , log |zn|).

There are no Maslov index 0 discs; one family of Maslov index 2 discs
for each facet F of ∆. Primitive outward normal: ν(F ) ∈ Z

n.

W =
∑

F facet

e−2πα(F ) zν(F ) where eqn. of F is 〈ν(F ), φ〉 = α(F ).

Hori-Vafa’s “renormalization”

Our mirror is smaller than expected. Enlarge M by “inflation along D”:

Consider (X , ωk) where [ωk ] = [ω] + k c1(X ), k → ∞ (X must be Fano)
(in toric case, enlarges ∆ by k) and rescale W by factor ek .
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Maslov index 0 discs and wall-crossing

Bubbling of Maslov index 0 discs causes the disc count nβ(L) to jump.

β
(µ = 2)

q

p

β′

(µ = 2)

α
µ = 0

q

q

p
(wall)

β′

(µ = 2)
α

q

q q

p

Typically, for n ≥ 3 the disc count depends on p ∈ L (⇒ W multivalued).
For n = 2 the disc count is independent of p ∈ L but jumps where L

bounds a Maslov index 0 disc (⇒ W discontinuous).

Proposition (Fukaya-Oh-Ohta-Ono + ε)

For n = 2, crossing a wall in which L bounds a single Maslov index 0 disc

in a class α modifies W by a holomorphic substitution of variables

zβ 7→ zβ h(zα)[∂β]·[∂α] ∀β ∈ π2(X , L), where h(zα) = 1 + O(zα) ∈ C[[zα]].

Conjecture: the mirror is obtained from M by gluing the various regions
delimited by the walls according to these changes of variables.
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Example: CP
2

X = CP
2, ω = ωstd , Ω =

dx ∧ dy

xy − ǫ
, D = {xy = ǫ} ∪ {line at ∞}:

�
�
� ��× 0 × ǫ

γ(r) (circle of radius r)

r
λ

xy ∈ C

(x , y) ∈ C
2

f
Tr ,λ

Tr ,λ is special Lagrangian; wall-crossing at r = |ǫ| (when Tr ,λ hits f −1(0)).

case r> |ǫ|: standard tori case r< |ǫ|: Chekanov tori

W = z1 + z2 +
e−Λ

z1z2
W = u +

e−Λ(1 + v)2

u2v

u ↔ trivial section
v ↔ vanishing cycle at 0

(|v | = exp(−λ))

Geometry of M: v = z2/z1; u = z1 or z2 depending on sign of λ.

Quantum corrections (geometry of W ): v = z2/z1, u = z1 + z2.
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Critical values of W and quantum cohomology

QH∗(X ) (with C coefficients) acts on HF (L,∇) by quantum cap-product.

Proposition

Assume L does not bound Maslov index 0 holom. discs. If HF (L,∇) 6= 0,

then W (L,∇) is an eigenvalue of quantum cup-product by c1(X ).

(idea: [D] ∩ [L] = W (L,∇) [L]).

Combining with Cho-Oh, this gives:

Theorem (cf. Kontsevich, ...)

X smooth toric Fano ⇒ all the critical values of W are eigenvalues of

c1(X ) ∗ − : QH∗(X ) → QH∗(X ).

(in toric case HF (L,∇) 6= 0 ⇔ dW = 0; maybe also in general?)

Denis Auroux (MIT) Mirror symmetry in the complement ... August 27, 2007 - IHÉS 11 / 13



Relative homological mirror symmetry

D ⊂ X carries an induced holom. volume form ΩD = ResD(Ω).

Conjecture: near boundary of moduli space, L ⊂ nbd. of D, and
L is an S1-bundle over a special Lagrangian in (D,ΩD).

Let MD = {zδ = 1} (δ = class of linking disc): complex hypersurface
contained in ∂M = {|zδ| = 1}. Expect: MD is mirror to D.
(Note: assuming D smooth, in renormalization limit, MD ∼ fiber of W near ∞)

Relative Fukaya category F(M,MD): objects = admissible Lagr. L ⊂ M

with ∂L ⊂ MD + flat conn. ∇; Hom(L1,L2) = CF∗(int(L1), int(L+
2 ))

(admissible: zδ ∈ R+ near ∂L; L+
2 = perturb L2 to positive position) [Kontsevich, Seidel]

Conjecture (relative homological mirror symmetry)

DbCoh(X )
restr

−−−−→ DbCoh(D)

≃





y

HMS HMS





y

≃

DπF(M,MD)
restr

−−−−→
L 7→ ∂L

DπF(MD)
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