Homological Mirror Symmetry for Fano Surfaces

Denis Auroux

(joint work with L. Katzarkov, D. Orlov)
(after ideas of Kontsevich, Seidel, Hori, Vafa, ...)

DON'T PANIC!

Mirror Symmetry

Complex manifolds:

(X, J) locally $\simeq\left(\mathbb{C}^{n}, i\right)$
Look at complex analytic subvarieties + holom. vector bundles, or better: coherent sheaves (cokernels of morphisms of holom. bundles with finite resolution)

Intersection theory $=$ Morphisms and extensions of sheaves.

Symplectic manifolds:

(Y, ω) locally $\simeq\left(\mathbb{R}^{2 n}, \sum d x_{i} \wedge d y_{i}\right)$
(in $\operatorname{dim}_{\mathbb{R}} 2$, any orientable surface!)
Look at Lagrangian submanifolds:

$$
L^{n} \subset Y^{2 n} \text { with } \omega_{\mid L}=0\left(\text { locally } \simeq \mathbb{R}^{n} \subset \mathbb{R}^{2 n}\right)
$$

(in $\operatorname{dim}_{\mathbb{R}} 2$, all embedded curves!)
Intersection theory $=$ Floer homology
(discard intersections that cancel by Hamiltonian isotopy)

Mirror symmetry:

Duality between type II A and II B string theories.
D-branes $=$ boundary conditions for open strings.
Homological mirror symmetry (Kontsevich, ...):

$$
\begin{aligned}
& \text { A-branes }=\text { Lagrangian submanifolds }, \\
& \text { B-branes }=\text { coherent sheaves. }
\end{aligned}
$$

only in a weaker sense: derived categories.

Homological Mirror Symmetry Conjecture: Calabi-Yau case

Roughly: X, Y Calabi-Yau $\left(c_{1}=0\right)$ mirror pair \Rightarrow

$$
\begin{aligned}
D^{b} \operatorname{Coh}(X) & \simeq D \mathcal{F}(Y) \\
D \mathcal{F}(X) & \simeq D^{b} \operatorname{Coh}(Y)
\end{aligned}
$$

$\operatorname{Coh}(X)=$ category of coherent sheaves on X complex mfld. $D^{b}=$ bounded derived category
Objects $=$ complexes $0 \rightarrow \cdots \rightarrow \mathcal{E}^{i} \xrightarrow{d^{i}} \mathcal{E}^{i+1} \rightarrow \cdots \rightarrow 0$.
Morphisms $=\left\{\begin{array}{l}\text { morphisms of complexes } \\ + \text { formal inverses of quasi-isoms }\end{array}\right.$
$\mathcal{F}(Y)=$ Fukaya A_{∞}-category of (Y, ω). Roughly:
Objects $=($ some $)$ Lagrangian submanifolds $(+$ flat bundles $)$
Morphisms: $\operatorname{Hom}\left(L, L^{\prime}\right)=C F^{*}\left(L, L^{\prime}\right)=\mathbb{C}^{\left|L \cap L^{\prime}\right|}$ if $L \pitchfork L^{\prime}$.
(Floer complex, graded by Maslov index)

- Differential $d=m_{1}: \operatorname{Hom}\left(L_{0}, L_{1}\right) \rightarrow \operatorname{Hom}\left(L_{0}, L_{1}\right)[1]$
- Product $m_{2}: \operatorname{Hom}\left(L_{0}, L_{1}\right) \otimes \operatorname{Hom}\left(L_{1}, L_{2}\right) \rightarrow \operatorname{Hom}\left(L_{0}, L_{2}\right)$
(associative up to homotopy)

- Higher products

$m_{k}: \operatorname{Hom}\left(L_{0}, L_{1}\right) \otimes \cdots \otimes \operatorname{Hom}\left(L_{k-1}, L_{k}\right) \rightarrow \operatorname{Hom}\left(L_{0}, L_{k}\right)[2-k]$
(related by A_{∞}-equations)

Fukaya categories

$\mathcal{F}(Y)=$ Fukaya A_{∞}-category of (Y, ω).
Objects $=($ some $)$ Lagrangian submanifolds $(+$ flat bundles $)$
Morphisms: $\operatorname{Hom}\left(L, L^{\prime}\right)=C F^{*}\left(L, L^{\prime}\right)=\mathbb{C}^{\left|L \cap L^{\prime}\right|}$ if $L \pitchfork L^{\prime}$.
(Floer complex, graded by Maslov index)

- Differential $d=m_{1}: \operatorname{Hom}\left(L_{0}, L_{1}\right) \rightarrow \operatorname{Hom}\left(L_{0}, L_{1}\right)[1]$ $\left\langle m_{1}(p), q\right\rangle$ counts pseudo-holomorphic maps
(in $\operatorname{dim}_{\mathbb{R}} 2$, same as immersed discs with convex corners)

- Product $m_{2}: \operatorname{Hom}\left(L_{0}, L_{1}\right) \otimes \operatorname{Hom}\left(L_{1}, L_{2}\right) \rightarrow \operatorname{Hom}\left(L_{0}, L_{2}\right)$ $\left\langle m_{2}(p, q), r\right\rangle$ counts pseudo-holomorphic maps

- Higher products
$m_{k}: \operatorname{Hom}\left(L_{0}, L_{1}\right) \otimes \cdots \otimes \operatorname{Hom}\left(L_{k-1}, L_{k}\right) \rightarrow \operatorname{Hom}\left(L_{0}, L_{k}\right)[2-k]$ $\left\langle m_{k}\left(p_{1}, \ldots, p_{k}\right), q\right\rangle$ counts pseudo-holomorphic maps

Homological Mirror Symmetry Conjecture: Fano case

X Fano $\left(c_{1}(T X)>0\right) \stackrel{\text { M.S. }}{\longleftrightarrow}$ "Landau-Ginzburg model"

$$
\left\{\begin{array}{l}
Y \text { (non-compact) manifold } \\
w: Y \rightarrow \mathbb{C} \text { "superpotential" }
\end{array}\right.
$$

$$
\begin{array}{ll}
D^{b} C o h(X) & \simeq D \mathcal{F}(w) \\
D \mathcal{F}(X) & \simeq D \operatorname{Sing}(w)
\end{array}
$$

$D \mathcal{F}(w)$ (Lagrangians) and $D \operatorname{Sing}(w)$ (sheaves) $=$ symplectic and complex geometries of singularities of w.

If $w: Y \rightarrow \mathbb{C}$ Lefschetz fibration (isolated non-deg. crit. pts):

$L_{i} \subset \Sigma_{0}$ Lagrangian sphere
$=$ vanishing cycle associated to γ_{i} (collapses to crit. pt. by // transport)

Seidel: $\mathcal{F}\left(w,\left\{\gamma_{i}\right\}\right)$
finite, directed A_{∞}-category.
Objects: L_{1}, \ldots, L_{r}.
$\operatorname{Hom}\left(L_{i}, L_{j}\right)= \begin{cases}C F^{*}\left(L_{i}, L_{j}\right)=\mathbb{C}^{\left|L_{i} \cap L_{j}\right|} & \text { if } i<j \\ \mathbb{C} \cdot \operatorname{Id} & \text { if } i=j \\ 0 & \text { if } i>j\end{cases}$
Products: $\left(m_{k}\right)_{k \geq 1}=$ Floer theory for Lagrangians $\subset \Sigma_{0}$.

Fukaya-Seidel categories

Products: $\left(m_{k}\right)_{k \geq 1}=$ Floer theory for Lagrangians $\subset \Sigma_{0}$. $m_{k}: \operatorname{Hom}\left(L_{i_{0}}, L_{i_{1}}\right) \otimes \cdots \otimes \operatorname{Hom}\left(L_{i_{k-1}}, L_{i_{k}}\right) \rightarrow \operatorname{Hom}\left(L_{i_{0}}, L_{i_{k}}\right)[2-k]$

- trivial unless $i_{0}<\cdots<i_{k}$
- count discs in Σ_{0} w/ boundary in $\bigcup L_{i}$ (Floer theory)

Remarks:

- $\left\langle L_{1}, \ldots, L_{r}\right\rangle=$ exceptional collection generating $D \mathcal{F}$.
- objects are also Lefschetz thimbles (discs bounded by L_{i})
- in our case, no technical issues such as bubbling etc.
- coefficient ring: $R=\mathbb{C}$, count w/ coef. $\pm \exp \left(-\int_{D^{2}} u^{*} \omega\right)$

Theorem. (Seidel) Changing $\left\{\gamma_{i}\right\}$ affects $\mathcal{F}\left(w,\left\{\gamma_{i}\right\}\right)$ by mutations; $D \mathcal{F}(w)$ depends only on $w:(Y, \omega) \rightarrow \mathbb{C}$.

Example: weighted projective planes

(cf. work of Seidel on $\mathbb{C P}^{2}$)
$X=\mathbb{C P}^{2}(a, b, c)=\left(\mathbb{C}^{3}-\{0\}\right) /(x, y, z) \sim\left(t^{a} x, t^{b} y, t^{c} z\right)$
(Fano orbifold).
$D^{b} \operatorname{Coh}(X)$ generated by exceptional collection
$O_{X}, O_{X}(1), \ldots, O_{X}(N-1)(N=a+b+c)$
(Homogeneous coords. x, y, z are sections of $O(a), O(b), O(c)$)
$\operatorname{Hom}(O(i), O(j)) \simeq \operatorname{degree}(j-i)$ part of
symmetric algebra $\mathbb{C}[x, y, z]$ (degs. a, b, c)
All in degree 0 (no Ext's); composition $=$ obvious.

Mirror: $Y=\left\{x^{a} y^{b} z^{c}=1\right\} \subset\left(\mathbb{C}^{*}\right)^{3}, w=x+y+z$.
$\left(Y \simeq\left(\mathbb{C}^{*}\right)^{2}\right.$ if $\left.\operatorname{gcd}(a, b, c)=1\right)$
$\mathbb{Z} / N(N=a+b+c)$ acts by diagonal mult.; complex conjugation.
We choose ω invariant under \mathbb{Z} / N and complex conj.

$$
(\Rightarrow[\omega]=0 \text { exact })
$$

Theorem. $D \mathcal{F}(w) \simeq D^{b} \operatorname{Coh}(X)$
(should also work in higher dimensions...)

Non-commutative deformations

$X=\mathbb{C P}^{2}(a, b, c) ;$
$Y=\left\{x^{a} y^{b} z^{c}=1\right\} \subset\left(\mathbb{C}^{*}\right)^{3}, w=x+y+z$,
ω invariant under \mathbb{Z} / N and complex conj. (\Rightarrow exact):
Theorem. $D \mathcal{F}(w) \simeq D^{b} \operatorname{Coh}(X)$
Can deform $F S(w)$ by changing $[\omega]$ (\& introducing a B-field).
Choose $\tau \in \mathbb{C}$, and take $\int_{S^{1} \times S^{1}}[\omega+i B]=\tau$ (keeping \mathbb{Z} / N-invariance) $\quad\left(S^{1} \times S^{1}\right.$ generates $\left.H_{2}(Y, \mathbb{Z}) \simeq \mathbb{Z}\right)$ \rightarrow deformed category $D \mathcal{F}(w)_{T}$.
\Longleftrightarrow non-commutative deformation X_{τ} of X : deform polynomial algebra $\mathbb{C}[x, y, z]$ to

$$
y z=\mu_{1} z y, \quad z x=\mu_{2} x z, \quad x y=\mu_{3} y x,
$$

with $\mu_{1}^{a} \mu_{2}^{b} \mu_{3}^{c}=e^{-\tau}$
Theorem. $\forall \tau \in \mathbb{C}, D \mathcal{F}(w)_{\tau} \simeq D^{b} \operatorname{Coh}(X)_{\tau}$.

Outline of argument

$Y=\left\{x^{a} y^{b} z^{c}=1\right\} \subset\left(\mathbb{C}^{*}\right)^{3}, w=x+y+z:$
$\operatorname{crit} w=\left\{\lambda \in \mathbb{C}, \lambda^{a+b+c}=\frac{(a+b+c)^{a+b+c}}{a^{a b} b_{c} c}\right\}=\left\{\lambda_{j}, 0 \leq j<N\right\}$

$$
\lambda_{0} \in \mathbb{R}_{+}, \lambda_{j}=\lambda_{0} \exp \left(\frac{-2 \pi i j}{a+b+c}\right)
$$

Reference fiber: $\Sigma_{0}=w^{-1}(0)$; arcs $\gamma_{j}=$ straight lines.
\Rightarrow vanishing cycles $L_{j} \subset \Sigma_{0}$.
If ω is \mathbb{Z}_{N}-invariant, then $L_{j}=\exp \left(\frac{-2 \pi i j}{a+b+c}\right) \cdot L_{0}$.
Visualize L_{j} and intersections via projection $\pi_{x}: \Sigma_{0} \rightarrow \mathbb{C}^{*}$. ($b+c$-fold branched covering, with $a+b+c$ branch points)

$(a, b, c)=(4,2,1)$

$$
(a, b, c)=(1,1,1)
$$

\Rightarrow Description of $\mathcal{F}\left(w,\left\{\gamma_{j}\right\}\right)$:

- Objects: $L_{j}, 0 \leq j<N$.
- $\bigoplus_{i<j} C F^{*}\left(L_{i}, L_{j}\right)=$ free module of rank $3 N$, generators

$$
\begin{array}{ll}
x_{i} \in C F^{*}\left(L_{i}, L_{i+a}\right), & \bar{x}_{i} \in C F^{*}\left(L_{i}, L_{i+b+c}\right), \\
y_{i} \in C F^{*}\left(L_{i}, L_{i+b}\right), & \bar{y}_{i} \in C F^{*}\left(L_{i}, L_{i+a+c}\right), \\
z_{i} \in C F^{*}\left(L_{i}, L_{i+c}\right), & \bar{z}_{i} \in C F^{*}\left(L_{i}, L_{i+a+b}\right) .
\end{array}
$$

Outline of argument

Description of $\mathcal{F}\left(w,\left\{\gamma_{j}\right\}\right)$:

- Objects: $L_{j}, 0 \leq j<N$.
- $\bigoplus_{i<j} C F^{*}\left(L_{i}, L_{j}\right)=$ free module of rank $3 N$, generators

$$
\begin{array}{ll}
x_{i} \in C F^{*}\left(L_{i}, L_{i+a}\right), & \bar{x}_{i} \in C F^{*}\left(L_{i}, L_{i+b+c}\right), \\
y_{i} \in C F^{*}\left(L_{i}, L_{i+b}\right), & \bar{y}_{i} \in C F^{*}\left(L_{i}, L_{i+a+c}\right), \\
z_{i} \in C F^{*}\left(L_{i}, L_{i+c}\right), & \bar{z}_{i} \in C F^{*}\left(L_{i}, L_{i+a+b}\right) .
\end{array}
$$

- for suitable graded Lagrangian lifts of L_{j},

$$
\operatorname{deg}\left(x_{i}, y_{i}, z_{i}\right)=1, \quad \operatorname{deg}\left(\bar{x}_{i}, \bar{y}_{i}, \bar{z}_{i}\right)=2 .
$$

- $m_{k}=0$ for $k \neq 2$.
- only non-zero compositions:

$$
\begin{array}{ll}
m_{2}\left(x_{i}, y_{i+a}\right)=\alpha \bar{z}_{i}, & m_{2}\left(x_{i}, z_{i+a}\right)=\alpha^{\prime} \bar{y}_{i}, \\
m_{2}\left(y_{i}, z_{i+b}\right)=\alpha \bar{x}_{i}, & m_{2}\left(y_{i}, x_{i+b}=\alpha^{\prime} \bar{z}_{i},\right. \\
m_{2}\left(z_{i}, x_{i+c}\right)=\alpha \bar{y}_{i}, & m_{2}\left(z_{i}, y_{i+c}\right)=\alpha^{\prime} \bar{x}_{i} .
\end{array}
$$

If $[\omega]=0$ then $\alpha=\alpha^{\prime}$ (\Rightarrow exterior algebra), in general

$$
\frac{\alpha}{\alpha^{\prime}}=\exp \left(-\frac{1}{a+b+c} \int_{S^{1} \times S^{1}} \omega+i B\right) .
$$

Then pass to dual exceptional collection by "full mutation" (change $\left\{\gamma_{j}\right\}$ to $\left\{\gamma_{j}^{\prime}\right\}$ with base point at infinity)
\Rightarrow exterior algebra becomes truncated symmetric algebra.

