The symplectic geometry of symmetric products and invariants of 3-manifolds with boundary

Denis Auroux

UC Berkeley

AMS Invited Address - Joint Mathematics Meetings New Orleans, January 2011
builds on work of: R. Lipshitz, P. Ozsváth, D. Thurston; T. Perutz, Y. Lekili M. Abouzaid, P. Seidel; S. Ma'u, K. Wehrheim, C. Woodward

Low-dimensional topology

- Goal: find invariants to distinguish smooth manifolds
- Dimensions 3 and 4 hardest (Poincaré conjecture, ...)
- Exotic smooth 4-manifolds (homeomorphic, not diffeomorphic)

Smooth 3- and 4-manifold invariants (beyond algebraic topology)
 80's Donaldson invariants
 90's Seiberg-Witten invariants
 increasingly computable and versatile
 00's Ozsváth-Szabó invariants

These all associate numerical invariants to closed 4-manifolds, and (graded) abelian groups to closed 3-manifolds. But the story goes further!

Heegaard-Floer TQFT

Ozsváth-Szabó (2000)

- Y^{3} closed $\rightsquigarrow \widehat{H F}(Y)$ abelian group (Heegaard-Floer homology)
- W^{4} cobordism $\left(\partial W=Y_{2}-Y_{1}\right) \rightsquigarrow \widehat{F}_{W}: \widehat{H F}\left(Y_{1}\right) \rightarrow \widehat{H F}\left(Y_{2}\right)$
- (and more)

Extend to surfaces and 3 -manifolds with boundary?

- Σ surface \rightsquigarrow category $\mathcal{C}(\Sigma)$?
- Y^{3} with boundary $\partial Y=\Sigma \rightsquigarrow$ object $C(Y) \in \mathcal{C}(\Sigma)$?
- cobordism $\partial Y=\Sigma_{2}-\Sigma_{1} \rightsquigarrow$ functor $\mathcal{C}\left(\Sigma_{1}\right) \rightarrow \mathcal{C}\left(\Sigma_{2}\right)$?
- Want: $\widehat{H F}\left(Y_{1} \cup_{\Sigma} Y_{2}\right)=\operatorname{hom}_{\mathcal{C}(\Sigma)}\left(C\left(Y_{1}\right), C\left(Y_{2}\right)\right)$ (pairing theorem)

This can be done in 2 equivalent ways: bordered Heegaard-Floer homology (Lipshitz-Ozsváth-Thurston 2008, more computable), or geometry of Lagrangian correspondences (Lekili-Perutz 2010, more conceptual).

Plan of the talk

- Heegaard-Floer homology
- Background: Floer homology, Fukaya categories, correspondences
- The Lekili-Perutz approach: correspondences from cobordisms
- The Fukaya category of the symmetric product
- The Lipshitz-Ozsváth-Thurston strands algebra
- Modules and bimodules from bordered 3-manifolds

Heegaard-Floer homology

Y^{3} closed 3-manifold admits a Heegaard splitting into two handlebodies $Y=H_{\alpha} \cup_{\bar{\Sigma}} H_{\beta}$.

This is encoded by a Heegaard diagram $\left(\bar{\Sigma}, \alpha_{1} \ldots \alpha_{g}, \beta_{1} \ldots \beta_{g}\right) . \quad(g=\operatorname{genus}(\bar{\Sigma}))$

unordered g-tuples of points on punctured Σ
Let $T_{\alpha}=\alpha_{1} \times \cdots \times \alpha_{g}, T_{\beta}=\beta_{1} \times \cdots \times \beta_{g} \subset \operatorname{Sym}^{g}(\bar{\Sigma} \backslash z)$
Theorem (Ozsváth-Szabó, ~ 2000)
$\widehat{H F}(Y):=H F\left(T_{\beta}, T_{\alpha}\right)$ is independent of chosen Heegaard diagram.
(Floer homology: complex generated by $T_{\alpha} \cap T_{\beta}=g$-tuples of intersections between α and β curves, differential counts holomorphic curves).

Floer homology and Fukaya categories

Σ Riemann surface $\rightsquigarrow M=\operatorname{Sym}^{g}(\Sigma)$ symplectic manifold (monotone)
Products of disjoint loops/arcs (e.g. $T_{\alpha}=\alpha_{1} \times \cdots \times \alpha_{g}$) are Lagrangian.
Floer homology $=$ Lagrangian intersection theory, corrected by holomorphic discs to ensure deformation invariance.

- Floer complex $C F\left(L, L^{\prime}\right)=\bigoplus_{x \in L \cap L^{\prime}} \mathbb{Z}_{2} \times$ (assuming L, L^{\prime} transverse)
- differential $\partial: C F\left(L, L^{\prime}\right) \rightarrow C F\left(L, L^{\prime}\right)$ coeff. of y in ∂x counts holomorphic strips
- $H F\left(L, L^{\prime}\right)=\operatorname{Ker} \partial / \operatorname{Im} \partial$.

(For product Lagrangians $T_{\alpha}, T_{\beta} \subset \operatorname{Sym}^{g}(\Sigma)$, intersections $=$ tuples of $\alpha_{i} \cap \beta_{\sigma(i)}$; holom. curves in $\operatorname{Sym}^{g}(\Sigma)$ can be seen on Σ. So $\widehat{H F}=H F\left(T_{\beta}, T_{\alpha}\right)$ fairly easy)

Fukaya category $\mathcal{F}(M)$: objects $=$ Lagrangian submanifolds* (closed)

- hom $\left(L, L^{\prime}\right)=C F\left(L, L^{\prime}\right)$ with differential ∂
- composition $C F\left(L, L^{\prime}\right) \otimes C F\left(L^{\prime}, L^{\prime \prime}\right) \rightarrow C F\left(L, L^{\prime \prime}\right)$ coeff. of z in $x \cdot y$ counts holom. triangles

Lagrangian correspondences; the Lekili-Perutz TQFT

- Lagrangian correspondences $M_{1} \xrightarrow{L} M_{2}=$ Lagrangian submanifolds $L \subset\left(M_{1} \times M_{2},-\omega_{1} \oplus \omega_{2}\right)$. These generalize symplectomorphisms (but need not be single-valued); should map Lagrangians to Lagrangians.
- "Generalized Lagrangians" = formal images of Lagrangians under sequences of correspondences; Floer theory extends well. \rightsquigarrow extended Fukaya cat. $\mathcal{F} \#(M)$ (Ma'u-Wehrheim-Woodward).
- Correspondences $M_{1} \xrightarrow{L} M_{2}$ induce functors $\mathcal{F}^{\#}\left(M_{1}\right) \rightarrow \mathcal{F}^{\#}\left(M_{2}\right)$.

Heegaard-Floer TQFT

- Σ (punctured) surface \rightsquigarrow category $\mathcal{C}(\Sigma)=\mathcal{F}^{\#}\left(\operatorname{Sym}^{g}(\Sigma)\right)$
- Y^{3} with boundary $\partial Y=\Sigma \rightsquigarrow$ object \mathbf{T}_{Y} : (generalized) Lagrangian submanifold of $\operatorname{Sym}^{g}(\Sigma)$ (for a handlebody, $\mathbf{T}_{Y}=$ product torus)
- cobordism $\partial Y=\Sigma_{2}-\Sigma_{1} \rightsquigarrow$ functor induced by (generalized) Lagr. correspondence $\mathbf{T}_{Y}: \operatorname{Sym}^{k_{1}}\left(\Sigma_{1}\right) \longrightarrow \operatorname{Sym}^{k_{2}}\left(\Sigma_{2}\right)$.
- Pairing theorem: $\widehat{H F}\left(Y_{1} \cup_{\Sigma} Y_{2}\right) \simeq H F\left(\mathbf{T}_{Y_{1}}, \mathbf{T}_{-Y_{2}}\right)$.

Lekili-Perutz: correspondences from cobordisms

Perutz: Elementary cobordism $Y_{12}: \Sigma_{1} \rightsquigarrow \Sigma_{2}$
\Longrightarrow Lagrangian correspondence

$$
\mathbf{T}_{12} \subset \operatorname{Sym}^{k}\left(\Sigma_{1}\right) \times \operatorname{Sym}^{k+1}\left(\Sigma_{2}\right)(k \geq 0)
$$

(roughly: k points on $\Sigma_{1} \mapsto$ "same" k points on Σ_{2} plus one point anywhere on γ)

Lekili-Perutz: decompose Y^{3} into sequence of elementary cobordisms $Y_{i, i+1}$, compose all $\mathbf{T}_{i, i+1}$ to get a generalized correspondence \mathbf{T}_{Y}.
$\mathrm{T}_{Y}: \operatorname{Sym}^{k_{-}}\left(\Sigma_{-}\right) \rightarrow \operatorname{Sym}^{k_{+}}\left(\Sigma_{+}\right) \quad\left(\partial Y=\Sigma_{+}-\Sigma_{-}\right)$
Theorem (Lekili-Perutz)
\mathbf{T}_{Y} is independent of decomposition of Y into elementary cobordisms.

- View Y^{3} (sutured: $\partial Y=\Sigma_{+} \cup \Sigma_{-}$) as cobordism of surfaces w. boundary
- For a handlebody (as cobordism $D^{2} \rightsquigarrow \Sigma_{g}$), $\mathbf{T}_{Y} \simeq$ product torus
- Y^{3} closed, $Y \backslash B^{3}: D^{2} \rightsquigarrow D^{2}$, then $\mathbf{T}_{Y} \simeq \widehat{H F}(Y) \in \mathcal{F}^{\#}(p t)=$ Vect

Lekili-Perutz vs. bordered Heegaard-Floer

The extended Fukaya category $\mathcal{F}^{\#}\left(\operatorname{Sym}^{g}(\Sigma)\right)$ and the generalized Lagrangians \mathbf{T}_{Y} (for Y^{3} with $\partial Y=\Sigma$) constructed by Lekili-Perutz are not very explicit at first glance... unlike

Bordered Heegaard-Floer homology (Lipshitz-Ozsváth-Thurston 2008)

- Σ (decorated) surface \rightsquigarrow (cat. of modules over) dg-algebra $\mathcal{A}(\Sigma, g)$
- Y^{3} with $\partial Y=\Sigma \rightsquigarrow \widehat{C F A}(Y)$ (right A_{∞}) module over $\mathcal{A}(\Sigma, g)$
- pairing: $\widehat{H F}\left(Y_{1} \cup_{\Sigma} Y_{2}\right) \simeq \operatorname{hom}_{\bmod -\mathcal{A}}\left(\widehat{C F A}\left(-Y_{2}\right), \widehat{C F A}\left(Y_{1}\right)\right)$

In fact, by considering specific product Lagrangians in $\operatorname{Sym}^{g}(\Sigma)$ one gets:

Theorem

- $\mathcal{F}^{\#}\left(\operatorname{Sym}^{g}(\Sigma)\right)$ embeds fully faithfully into $\bmod -\mathcal{A}(\Sigma, g)$
- Given Y^{3} with $\partial Y=\Sigma$, the embedding maps \mathbf{T}_{Y} to $\widehat{C F A}(Y)$

The Lipshitz-Ozsváth-Thurston strands algebra $\mathcal{A}(\Sigma, g)$
Describe Σ by a pointed matched circle: segment with $4 g$ points carrying labels $1, \ldots, 2 g, 1, \ldots, 2 g$ ($=$ how to build $\Sigma=D^{2} \cup 2 g$ 1-handles)
$\mathcal{A}(\Sigma, g)$ is generated (over \mathbb{Z}_{2}) by g-tuples of \{upward strands, pairs of horizontal dotted lines\} s.t. the g source labels (resp. target labels) in $\{1, \ldots, 2 g\}$ are all distinct.

Example $(g=2)$

 $\{1,2\} \mapsto\{2,4\}$

- Differential: sum all ways of smoothing one crossing.
- Product: concatenation (end points must match).
- Treat $: \because:$ as $::+:$ and set $f=0$.

The extended Fukaya category vs. $\mathcal{A}(\Sigma, g)$

Theorem

$\mathcal{F} \#\left(\operatorname{Sym}^{g}(\Sigma)\right)$ embeds fully faithfully into mod- $\mathcal{A}(\Sigma, g) \quad\left(A_{\infty}\right.$-modules)

Main tool: partially wrapped Fukaya cat. $\mathcal{F}^{\#}\left(\operatorname{Sym}^{g}(\Sigma), z\right)(z \in \partial \Sigma)$

 Enlarge \mathcal{F} \#: add noncompact objects $=$ products of disjoint properly embedded arcs. Roughly, hom $\left(L_{0}, L_{1}\right):=C F\left(\tilde{L}_{0}, \tilde{L}_{1}\right)$, deforming all arcs so that end points of \tilde{L}_{0} lie above those of \tilde{L}_{1} (without crossing z). Similarly, product is defined by perturbing so that $\tilde{L}_{0}>\tilde{L}_{1}>\tilde{L}_{2}$.

Let $D_{s}=\prod_{i \in s} \alpha_{i}(s \subseteq\{1 \ldots 2 g\},|s|=g)$. Then:

1. $\bigoplus \operatorname{hom}\left(D_{s}, D_{t}\right) \simeq \mathcal{A}(\Sigma, g)$ s, t
2. the objects D_{s} generate $\mathcal{F}^{\#}\left(\operatorname{Sym}^{g}(\Sigma), z\right)$

Yoneda embedding and A_{∞}-modules

Recall: $Y^{3}, \partial Y=\Sigma \cup D^{2} \Rightarrow$ gen. Lagr. $\mathbf{T}_{Y} \in \mathcal{F}^{\#}\left(\operatorname{Sym}^{g} \Sigma\right)$ (Lekili-Perutz)

- Yoneda embedding: $\mathbf{T}_{Y} \mapsto \mathcal{Y}\left(\mathbf{T}_{Y}\right)=\bigoplus_{s}$ hom $\left(\mathbf{T}_{Y}, D_{s}\right)$ right A_{∞}-module over $\bigoplus_{s, t}$ hom $\left(D_{s}, D_{t}\right) \simeq \mathcal{A}(\Sigma, g)$.
- In fact, $\mathcal{Y}\left(\mathbf{T}_{Y}\right) \simeq \widehat{C F A}(Y)$ (bordered Heegaard-Floer module)
- Pairing theorem: if $Y=Y_{1} \cup Y_{2}, \partial Y_{1}=-\partial Y_{2}=\Sigma \cup D^{2}$, then

$$
\widehat{C F}(Y) \simeq \operatorname{hom}_{\mathcal{F} \#}\left(\mathbf{T}_{Y_{1}}, \mathbf{T}_{-Y_{2}}\right) \simeq \operatorname{hom}_{\bmod -\mathcal{A}}\left(\mathcal{Y}\left(\mathbf{T}_{-Y_{2}}\right), \mathcal{Y}\left(\mathbf{T}_{Y_{1}}\right)\right)
$$

- also: (using $\left.\mathcal{A}(-\Sigma, g) \simeq \mathcal{A}(\Sigma, g)^{o p}\right)$

$$
\widehat{C F}(Y) \simeq \mathbf{T}_{Y_{1}} \circ \mathbf{T}_{Y_{2}} \simeq \mathcal{Y}\left(\mathbf{T}_{Y_{1}}\right) \otimes_{\mathcal{A}} \mathcal{Y}\left(\mathbf{T}_{Y_{2}}\right)
$$

More generally, if $\partial Y=\Sigma_{+} \cup-\Sigma_{-}$(sutured manifold), the generalized corresp. $\mathbf{T}_{Y} \in \mathcal{F} \#\left(-\right.$ Sym $^{k} \Sigma_{-} \times$Sym $\left.^{k_{+}} \Sigma_{+}\right)$yields an A_{∞}-bimodule

$$
\mathcal{Y}\left(\mathbf{T}_{Y}\right)=\bigoplus_{s, t} \operatorname{hom}\left(D_{-, s}, \mathbf{T}_{Y}, D_{+, t}\right) \in \mathcal{A}\left(\Sigma_{-}, k_{-}\right)-\bmod -\mathcal{A}\left(\Sigma_{+}, k_{+}\right)
$$

(cf. Ma'u-Wehrheim-Woodward). $\mathcal{Y}\left(\mathbf{T}_{Y}\right) \simeq \widehat{C F D A}(Y)$? (same properties)

Future directions

- $H F^{ \pm}$for bordered 3-manifolds? (in computable form) (algebraic model for filtered $\mathcal{F}^{\#}$ of closed symmetric product?)
- 4-manifold invariants: use this technology to relate Perutz invariants of broken Lefschetz fibrations to Ozsváth-Szabó?
- similar constructions in Khovanov homology (after Seidel-Smith)?

References

- D. Auroux, Fukaya categories and bordered Heegaard-Floer homology. Proceedings of ICM 2010, pp. 917-941 (arXiv:1003.2962).
- R. Lipshitz, P. Ozsváth, D. Thurston, Bordered Heegaard Floer homology: invariance and pairing, preprint (arXiv:0810.0687).
- Y. Lekili, T. Perutz, in preparation.

See also work of:

- Rumen Zarev, on "bordered sutured Floer homology".
- Tova Brown, on cobordism maps for 4-manifolds with corners.

$\bigoplus \operatorname{hom}\left(D_{s}, D_{t}\right) \simeq \mathcal{A}(\Sigma, k)$

By def. of $\mathcal{F} \#\left(\operatorname{Sym}^{k}(\Sigma), z\right), \operatorname{hom}\left(D_{s}, D_{t}\right)=\operatorname{CF}\left(\tilde{D}_{s}^{+}, \tilde{D}_{t}^{-}\right) \quad\left(\tilde{D}_{s}^{ \pm}=\prod_{i \in s} \tilde{\alpha}_{i}^{ \pm}\right)$

$\left.\begin{array}{rl}\text { Dictionary: points of } \tilde{\alpha}_{i}^{+} \cap \tilde{\alpha}_{j}^{-} \longleftrightarrow \text { strands } & \mathscr{\Omega}^{j} \\ & \text { (intersections on central axis } \longleftrightarrow \\ \left.:-)^{j}\right)\end{array}\right\}$ generators $=k$-tuples

- Similarly for product (triple diagram); all diagrams are "nice"

$\left\{D_{s}=\prod_{i \in s} \alpha_{i}\right\}_{s \subseteq\{1 \ldots 2 g\}}$ generate $\mathcal{F}^{\#}\left(\operatorname{Sym}^{k}(\Sigma), z\right)$

- $\pi: \Sigma \xrightarrow{2: 1} \mathbb{C}$ induces a Lefschetz fibration $f_{k}: \operatorname{Sym}^{k}(\Sigma) \rightarrow \mathbb{C}$ with $\binom{2 g+1}{k}$ critical points. Its thimbles $=$ products of $\alpha_{i}(1 \leq i \leq 2 g+1)$ generate $\mathcal{F}\left(f_{k}\right) \simeq \mathcal{F}\left(\operatorname{Sym}^{k} \Sigma,\left\{z, z^{\prime}\right\}\right)$ (Seidel)

- These $\binom{2 g+1}{k}$ objects also generate $\mathcal{F}^{\#}\left(\operatorname{Sym}^{k} \Sigma, z\right)$.

Uses: acceleration functor $\mathcal{F}\left(\operatorname{Sym}^{k} \Sigma,\left\{z, z^{\prime}\right\}\right) \rightarrow \mathcal{F}\left(\operatorname{Sym}^{k} \Sigma, z\right)$ (Abouzaid-Seidel)

- $\alpha_{i_{1}} \times \cdots \times \alpha_{2 g+1} \simeq$ twisted complex built from $\left\{\alpha_{i_{1}} \times \cdots \times \alpha_{j}\right\}_{j=1}^{2 g}$ Uses: arc slides are mapping cones

