Lefschetz pencils and the symplectic topology of complex surfaces

Denis AUROUX

Massachusetts Institute of Technology

Symplectic 4-manifolds

A (compact) symplectic 4-manifold (M^4, ω) is a smooth 4-manifold with a symplectic form $\omega \in \Omega^2(M)$, closed $(d\omega = 0)$ and non-degenerate $(\omega \wedge \omega > 0)$.

Local model (Darboux): \mathbb{R}^4 , $\omega_0 = dx_1 \wedge dy_1 + dx_2 \wedge dy_2$.

E.g.: $(\mathbb{CP}^n, \omega_0 = i\partial\bar{\partial}\log ||z||^2) \supset \text{ complex projective surfaces.}$

The symplectic category is strictly larger (Thurston 1976, Gompf 1994, ...).

Hierarchy of compact oriented 4-manifolds:

COMPLEX PROJ.	Ç	SY	MPLECTIC	Ç	SMOOTH	
	surgery			SW invariants		
Thurston, Gompf			Taubes			

 \Rightarrow Classification problems.

Complex surfaces are fairly well understood, but their topology as smooth or symplectic manifolds remains mysterious.

Example: Horikawa surfaces

 X_1, X_2 projective surfaces of general type, minimal, $\pi_1 = 1$ X_1, X_2 are not deformation equivalent (Horikawa) X_1, X_2 are homeomorphic $(b_2^+ = 21, b_2^- = 93, \text{non-spin})$ **Open problems:**

- X_1, X_2 diffeomorphic? (expect: no, even though $SW(X_1) = SW(X_2)$)
- $(X_1, \omega_1), (X_2, \omega_2)$ (canonical Kähler forms) symplectomorphic?

Remark: projecting to \mathbb{CP}^1 , Horikawa surfaces carry genus 2 fibrations.

Lefschetz fibrations

A **Lefschetz fibration** is a C^{∞} map $f: M^4 \to S^2$ with isolated non-degenerate crit. pts, where (in oriented coords.) $f(z_1, z_2) \sim z_1^2 + z_2^2$. (\Rightarrow sing. fibers are nodal)

Monodromy around sing. fiber = **Dehn twist**

Also consider: Lefschetz fibrations with distinguished sections.

Gompf: Assuming [fiber] non-torsion in $H_2(M)$, M carries a symplectic form s.t. $\omega_{\text{|fiber}} > 0$, unique up to deformation. (extends Thurston's result on symplectic fibrations)

Symplectic manifolds and Lefschetz pencils

Algebraic geometry:

X complex surface + ample line bundle \Rightarrow projective embedding $X \hookrightarrow \mathbb{CP}^N$. Intersect with a generic pencil of hyperplanes \Rightarrow Lefschetz pencil

(= family of curves, at most nodal, through a finite set of base points). Blow up base points \Rightarrow Lefschetz fibration with distinguished sections.

Donaldson: Any compact sympl. (X^4, ω) admits a symplectic Lefschetz pencil $f: X \setminus \{\text{base}\} \to \mathbb{CP}^1$; blowing up base points, get a sympl. Lefschetz fibration $\hat{f}: \hat{X} \to S^2$ with distinguished -1-sections.

(uses "approx. hol. geometry": $f = s_0/s_1, s_i \in C^{\infty}(X, L^{\otimes k}), L$ "ample", $\sup |\bar{\partial}s_i| \ll \sup |\partial s_i|$)

In large enough degrees (fibers ~ $m[\omega]$, $m \gg 0$), Donaldson's construction is canonical up to isotopy; combine with Gompf's results \Rightarrow

Corollary: the Horikawa surfaces X_1 and X_2 (with Kähler forms $[\omega_i] = K_{X_i}$) are symplectomorphic iff generic pencils of curves in the pluricanonical linear systems $|mK_{X_i}|$ define topologically equivalent Lefschetz fibrations with sections for some m (or for all $m \gg 0$).

Monodromy: $\psi : \pi_1(S^2 \setminus \{p_1, ..., p_r\}) \to \operatorname{Map}_g = \pi_0 \operatorname{Diff}^+(\Sigma_g)$ Mapping class group: e.g. for $T^2 = \mathbb{R}^2/\mathbb{Z}^2$, $\operatorname{Map}_1 = \operatorname{SL}(2, \mathbb{Z}); \tau_a = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \tau_b = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$ Choosing an ordered basis $\langle \gamma_1, \ldots, \gamma_r \rangle$ for $\pi_1(S^2 \setminus \{p_i\})$, get $(\tau_1, \ldots, \tau_r) \in \operatorname{Map}_q, \quad \tau_i = \psi(\gamma_i), \quad \prod \tau_i = 1.$

"factorization of Id as product of positive Dehn twists".

• With *n* distinguished sections: $\hat{\psi} : \pi_1(\mathbb{R}^2 \setminus \{p_i\}) \to \operatorname{Map}_{g,n}$ $\operatorname{Map}_{g,n} = \pi_0 \operatorname{Diff}^+(\Sigma, \partial \Sigma)$ genus *g* with *n* boundaries.

 $\Rightarrow \tau_1 \cdot \ldots \cdot \tau_r = \delta$ (monodromy at ∞ = boundary twist).

Factorizations

Two natural equivalence relations on factorizations:

1. Global conjugation (change of trivialization of reference fiber)

$$(\tau_1, \ldots, \tau_r) \sim (\phi \tau_1 \phi^{-1}, \ldots, \phi \tau_r \phi^{-1}) \quad \forall \phi \in \operatorname{Map}_g$$

2. Hurwitz equivalence (change of ordered basis $\langle \gamma_1, \ldots, \gamma_r \rangle$)

$$(\tau_1, \ldots, \tau_i, \tau_{i+1}, \ldots, \tau_r) \sim (\tau_1, \ldots, \tau_{i+1}, \tau_{i+1}^{-1} \tau_i \tau_{i+1}, \ldots, \tau_r)$$

$$\sim (\tau_1, \ldots, \tau_i \tau_{i+1} \tau_i^{-1}, \tau_i, \ldots, \tau_r)$$

(generates braid group action on r-tuples)

Classification in low genus

• g = 0, 1: only holomorphic fibrations (\Rightarrow ruled surfaces, elliptic surfaces).

• g = 2, assuming sing. fibers are irreducible:

Siebert-Tian (2003): always isotopic to holomorphic fibrations, i.e. built from:

$$(\tau_1 \cdot \tau_2 \cdot \tau_3 \cdot \tau_4 \cdot \tau_5 \cdot \tau_5 \cdot \tau_4 \cdot \tau_3 \cdot \tau_2 \cdot \tau_1)^2 = 1$$

$$(\tau_1 \cdot \tau_2 \cdot \tau_3 \cdot \tau_4 \cdot \tau_5)^6 = 1$$

$$(\tau_1 \cdot \tau_2 \cdot \tau_3 \cdot \tau_4)^{10} = 1$$

(up to a technical assumption; argument relies on pseudo-holomorphic curves)

• $g \ge 3$: intractable

(families of non-holom. examples by Ozbagci-Stipsicz, Smith, Fintushel-Stern, Korkmaz, ...)

The genus 2 fibrations on X_1, X_2 are different (e.g., different monodromy groups):

$$X_{1}: (\tau_{1} \cdot \tau_{2} \cdot \tau_{3} \cdot \tau_{4} \cdot \tau_{5} \cdot \tau_{5} \cdot \tau_{4} \cdot \tau_{3} \cdot \tau_{2} \cdot \tau_{1})^{12} = 1$$

$$X_{2}: (\tau_{1} \cdot \tau_{2} \cdot \tau_{3} \cdot \tau_{4})^{30} = 1$$

... but can't conclude from them!

Canonical pencils on Horikawa surfaces

On X_1 and X_2 , generic pencils in the linear systems $|K_{X_i}|$ have fiber genus 17 (with 16 base points), and 196 nodal fibers

 \Rightarrow compare 2 sets of 196 Dehn twists in Map_{17,16}?

Theorem: The canonical pencils on X_1 and X_2 are related by partial conjugation:

$$(\phi t_1 \phi^{-1}, \dots, \phi t_{64} \phi^{-1}, t_{65}, \dots, t_{196})$$
 vs. (t_1, \dots, t_{196})

The monodromy groups $G_1, G_2 \subset \operatorname{Map}_{17,16}$ are isomorphic; unexpectedly, the conjugating element ϕ belongs to the monodromy group.

Key point: $\mathbb{CP}^1 \times \mathbb{CP}^1$ and \mathbb{F}_6 are symplectomorphic; the branch curves of $\pi_1 : X_1 \to \mathbb{CP}^1 \times \mathbb{CP}^1$ and $\pi_2 : X_2 \to \mathbb{F}_6$ differ by twisting along a Lagrangian annulus.

Perspectives

Theorem: The canonical pencils on X_1 and X_2 are related by partial conjugation; $G_1, G_2 \subset \text{Map}_{17,16}$ are isomorphic; ϕ belongs to the monodromy group.

- The same properties hold for pluricanonical pencils $|mK_{X_i}|$ (in larger Map_{g,n})
- These pairs of pencils are twisted fiber sums of the same pieces.

• If ϕ were monodromy along an embedded loop $(+ \text{ more}) \Rightarrow (X_1, \omega_1) \simeq (X_2, \omega_2)$ (but only seems to arise from an immersed loop)

Question: compare these (very similar) mapping class group factorizations?? E.g.: "matching paths" (= Lagrangian spheres fibering above an arc). Expect:

 H_2 -classes represented by Lagrangian spheres \uparrow ? "alg. vanishing cycles" (ODP degenerations) (span $[\pi^*H_2(\mathbb{P}^1 \times \mathbb{P}^1)]^{\perp} \neq [\pi^*H_2(\mathbb{F}_6)]^{\perp})$

(but... $\phi \in G_2$ suggests where to start looking for exotic matching paths?)