Lefschetz pencils and the symplectic topology of complex surfaces

Denis AUROUX

Massachusetts Institute of Technology

Symplectic 4-manifolds

A (compact) symplectic 4-manifold $\left(M^{4}, \omega\right)$ is a smooth 4-manifold with a symplectic form $\omega \in \Omega^{2}(M)$, closed $(d \omega=0)$ and non-degenerate $(\omega \wedge \omega>0)$.

Local model (Darboux): $\mathbb{R}^{4}, \omega_{0}=d x_{1} \wedge d y_{1}+d x_{2} \wedge d y_{2}$.
E.g.: $\left(\mathbb{C P}^{n}, \omega_{0}=i \partial \bar{\partial} \log \|z\|^{2}\right) \supset$ complex projective surfaces.

The symplectic category is strictly larger (Thurston 1976, Gompf 1994, ...).

Hierarchy of compact oriented 4-manifolds:

\Rightarrow Classification problems.
Complex surfaces are fairly well understood, but their topology as smooth or symplectic manifolds remains mysterious.

Example: Horikawa surfaces

X_{1}, X_{2} projective surfaces of general type, minimal, $\pi_{1}=1$
X_{1}, X_{2} are not deformation equivalent (Horikawa)
X_{1}, X_{2} are homeomorphic $\quad\left(b_{2}^{+}=21, b_{2}^{-}=93\right.$, non-spin $)$

Open problems:

- X_{1}, X_{2} diffeomorphic? (expect: no, even though $S W\left(X_{1}\right)=S W\left(X_{2}\right)$)
- $\left(X_{1}, \omega_{1}\right),\left(X_{2}, \omega_{2}\right)$ (canonical Kähler forms) symplectomorphic?

Remark: projecting to $\mathbb{C P}^{1}$, Horikawa surfaces carry genus 2 fibrations.

Lefschetz fibrations

A Lefschetz fibration is a C^{∞} map $f: M^{4} \rightarrow S^{2}$ with isolated non-degenerate crit. pts, where (in oriented coords.) $f\left(z_{1}, z_{2}\right) \sim z_{1}^{2}+z_{2}^{2} . \quad(\Rightarrow$ sing. fibers are nodal $)$

Also consider: Lefschetz fibrations with distinguished sections.
Gompf: Assuming [fiber] non-torsion in $H_{2}(M), M$ carries a symplectic form s.t. $\omega_{\text {lfiber }}>0$, unique up to deformation. (extends Thurston's result on symplectic fibrations)

Symplectic manifolds and Lefschetz pencils

Algebraic geometry:

X complex surface + ample line bundle \Rightarrow projective embedding $X \hookrightarrow \mathbb{C P}^{N}$.
Intersect with a generic pencil of hyperplanes \Rightarrow Lefschetz pencil
(= family of curves, at most nodal, through a finite set of base points).
Blow up base points \Rightarrow Lefschetz fibration with distinguished sections.
Donaldson: Any compact sympl. $\left(X^{4}, \omega\right)$ admits a symplectic Lefschetz pencil $f: X \backslash\{$ base $\} \rightarrow \mathbb{C P}^{1}$; blowing up base points, get a sympl. Lefschetz fibration $\hat{f}: \hat{X} \rightarrow S^{2}$ with distinguished -1 -sections.

$$
\text { (uses "approx. hol. geometry": } \left.f=s_{0} / s_{1}, s_{i} \in C^{\infty}\left(X, L^{\otimes k}\right), L \text { "ample", sup }\left|\bar{\partial} s_{i}\right| \ll \sup \left|\partial s_{i}\right|\right)
$$

In large enough degrees (fibers $\sim m[\omega], m \gg 0$), Donaldson's construction is canonical up to isotopy; combine with Gompf's results \Rightarrow
Corollary: the Horikawa surfaces X_{1} and X_{2} (with Kähler forms $\left[\omega_{i}\right]=K_{X_{i}}$) are symplectomorphic iff generic pencils of curves in the pluricanonical linear systems $\left|m K_{X_{i}}\right|$ define topologically equivalent Lefschetz fibrations with sections for some m (or for all $m \gg 0$).

Monodromy

Monodromy around sing.
fiber $=$ Dehn twist

Monodromy: $\psi: \pi_{1}\left(S^{2} \backslash\left\{p_{1}, \ldots, p_{r}\right\}\right) \rightarrow \operatorname{Map}_{g}=\pi_{0} \operatorname{Diff}^{+}\left(\Sigma_{g}\right)$
Mapping class group: egg. for $T^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}, \operatorname{Map}_{1}=\operatorname{SL}(2, \mathbb{Z}) ; \tau_{a}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right), \tau_{b}=\left(\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right)$
Choosing an ordered basis $\left\langle\gamma_{1}, \ldots, \gamma_{r}\right\rangle$ for $\pi_{1}\left(S^{2} \backslash\left\{p_{i}\right\}\right)$, get

$$
\left(\tau_{1}, \ldots, \tau_{r}\right) \in \operatorname{Map}_{g}, \quad \tau_{i}=\psi\left(\gamma_{i}\right), \quad \prod \tau_{i}=1 .
$$

"factorization of Id as product of positive Dehn twists".

- With n distinguished sections: $\hat{\psi}: \pi_{1}\left(\mathbb{R}^{2} \backslash\left\{p_{i}\right\}\right) \rightarrow \operatorname{Map}_{g, n}$ $\operatorname{Map}_{g, n}=\pi_{0} \operatorname{Diff}^{+}(\Sigma, \partial \Sigma)$ genus g with n boundaries.

$$
\Rightarrow \tau_{1} \cdot \ldots \cdot \tau_{r}=\delta \quad \text { (monodromy at } \infty=\text { boundary twist). }
$$

Factorizations

Two natural equivalence relations on factorizations:

1. Global conjugation (change of trivialization of reference fiber)

$$
\left(\tau_{1}, \ldots, \tau_{r}\right) \sim\left(\phi \tau_{1} \phi^{-1}, \ldots, \phi \tau_{r} \phi^{-1}\right) \quad \forall \phi \in \operatorname{Map}_{g}
$$

2. Hurwitz equivalence (change of ordered basis $\left\langle\gamma_{1}, \ldots, \gamma_{r}\right\rangle$)
\{ genus g Lefschetz fibrations with n sections $\}$ / isomorphism

$$
\uparrow 1-1 \quad(\text { if } 2-2 g-n<0)
$$

$$
\left\{\begin{array}{c}
{\text { factorizations in } \text { Map }_{g, n}}_{\delta=\prod(\text { pos. Dehn twists })}^{\delta}
\end{array}\right\} / \begin{gathered}
\text { Hurwitz equiv. } \\
+ \text { global conj. }
\end{gathered}
$$

$$
\begin{aligned}
& \left(\tau_{1}, \ldots, \tau_{i}, \tau_{i+1}, \ldots \tau_{r}\right) \sim\left(\tau_{1}, \ldots, \tau_{i+1}, \tau_{i+1}^{-1} \tau_{i} \tau_{i+1}, \ldots, \tau_{r}\right) \\
& \sim\left(\tau_{1}, \ldots, \tau_{i} \tau_{i+1} \tau_{i}^{-1}, \tau_{i}, \ldots, \tau_{r}\right) \\
& \text { (generates braid group action on } r \text {-tuples) }
\end{aligned}
$$

Classification in low genus

- $g=0,1$: only holomorphic fibrations (\Rightarrow ruled surfaces, elliptic surfaces).
- $g=2$, assuming sing. fibers are irreducible:

Siebert-Tian (2003): always isotopic to holomorphic fibrations, i.e. built from:

$$
\begin{aligned}
& \left(\tau_{1} \cdot \tau_{2} \cdot \tau_{3} \cdot \tau_{4} \cdot \tau_{5} \cdot \tau_{5} \cdot \tau_{4} \cdot \tau_{3} \cdot \tau_{2} \cdot \tau_{1}\right)^{2}=1 \\
& \left(\tau_{1} \cdot \tau_{2} \cdot \tau_{3} \cdot \tau_{4} \cdot \tau_{5}\right)^{6}=1 \\
& \left(\tau_{1} \cdot \tau_{2} \cdot \tau_{3} \cdot \tau_{4}\right)^{10}=1
\end{aligned}
$$

(up to a technical assumption; argument relies on pseudo-holomorphic curves)

- $g \geq 3$: intractable
(families of non-holom. examples by Ozbagci-Stipsicz, Smith, Fintushel-Stern, Korkmaz, ...)

The genus 2 fibrations on X_{1}, X_{2} are different (e.g., different monodromy groups):
$X_{1}:\left(\tau_{1} \cdot \tau_{2} \cdot \tau_{3} \cdot \tau_{4} \cdot \tau_{5} \cdot \tau_{5} \cdot \tau_{4} \cdot \tau_{3} \cdot \tau_{2} \cdot \tau_{1}\right)^{12}=1$
$X_{2}:\left(\tau_{1} \cdot \tau_{2} \cdot \tau_{3} \cdot \tau_{4}\right)^{30}=1$
... but can't conclude from them!

Canonical pencils on Horikawa surfaces

On X_{1} and X_{2}, generic pencils in the linear systems $\left|K_{X_{i}}\right|$ have fiber genus 17 (with 16 base points), and 196 nodal fibers

$$
\Rightarrow \text { compare } 2 \text { sets of } 196 \text { Dehn twists in Map } 17,16 ?
$$

Theorem: The canonical pencils on X_{1} and X_{2} are related by partial conjugation:

$$
\left(\phi t_{1} \phi^{-1}, \ldots, \phi t_{64} \phi^{-1}, t_{65}, \ldots, t_{196}\right) \quad \text { vs. } \quad\left(t_{1}, \ldots, t_{196}\right)
$$

The monodromy groups $G_{1}, G_{2} \subset \operatorname{Map}_{17,16}$ are isomorphic; unexpectedly, the conjugating element ϕ belongs to the monodromy group.

Key point: $\mathbb{C P} \mathbb{P}^{1} \times \mathbb{C P}^{1}$ and \mathbb{F}_{6} are symplectomorphic; the branch curves of $\pi_{1}: X_{1} \rightarrow \mathbb{C P}^{1} \times \mathbb{C P}^{1}$ and $\pi_{2}: X_{2} \rightarrow \mathbb{F}_{6}$ differ by twisting along a Lagrangian annulus.

Perspectives

Theorem: The canonical pencils on X_{1} and X_{2} are related by partial conjugation; $G_{1}, G_{2} \subset \operatorname{Map}_{17,16}$ are isomorphic; ϕ belongs to the monodromy group.

- The same properties hold for pluricanonical pencils $\left|m K_{X_{i}}\right|$ (in larger $\operatorname{Map}_{g, n}$)
- These pairs of pencils are twisted fiber sums of the same pieces.
- If ϕ were monodromy along an embedded loop $(+$ more $) \Rightarrow\left(X_{1}, \omega_{1}\right) \simeq\left(X_{2}, \omega_{2}\right)$ (but only seems to arise from an immersed loop)

Question: compare these (very similar) mapping class group factorizations??
E.g.: "matching paths" (= Lagrangian spheres fibering above an arc). Expect:
H_{2}-classes represented by Lagrangian spheres

$$
\Uparrow ?
$$

"alg. vanishing cycles" (ODP degenerations) $\left(\operatorname{span}\left[\pi^{*} H_{2}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)\right]^{\perp} \neq\left[\pi^{*} H_{2}\left(\mathbb{F}_{6}\right)\right]^{\perp}\right)$

(but... $\phi \in G_{2}$ suggests where to start looking for exotic matching paths?)

