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Introduction

X compact Kähler manifold, L ample bundle.

Holomorphic sections of Lk, k À 0

⇒ projective embeddingX ↪→ CP
N (Kodaira).

⇒ smooth hypersurfaces (Bertini).

⇒ . . .

X complex surface, 3 generic sections of Lk

⇒ f : X → CP
2 branched covering,

singularities = cusps + nodes.

(X2n, ω) compact symplectic manifold :
∃J compatible almost-complex structure.

J is not integrable
⇒ no holomorphic coordinates
⇒ no holomorphic sections

Donaldson’s idea :

Approximately holomorphic sections
⇒ symplectic analogues of classical results.
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Asymptotically holomorphic sections

(X2n, ω) symplectic, compact

•
1
2π [ω] ∈ H

2(X,Z) (not restrictive)

• J compatible with ω ; g(., .) = ω(., J.)

• L line bundle such that c1(L) =
1
2π [ω]

• | · |L ; ∇L, curvature −iω

• gk = k g.

Definition. (sk)kÀ0 ∈ Γ(Ek) are asymptotically holo-
morphic (“A.H.”) if

∀p ∈ N, |sk|Cp,gk = O(1) and |∂̄sk|Cp,gk = O(k−1/2).

Definition. (sk)kÀ0 ∈ Γ(Ek) are uniformly transverse
to 0 if ∃η > 0 /sk is η-transverse to 0 ∀k, i.e.

∀x ∈ X, |sk(x)| < η ⇒ ∇sk(x) surjective and > η.

Proposition. Let (sk)kÀ0 ∈ Γ(Ek), A.H. and uni-
formly transverse to 0 : then for k À 0, Wk = s−1

k (0)
is a symplectic submanifold of X (approximately J-
holomorphic).

2



Symplectic submanifolds and beyond

Theorem 1 (Donaldson) For k À 0, the bundles
Lk admit sections which are A.H. and uniformly trans-
verse to 0.

⇒ construction of symplectic submanifolds.

Theorem 2 (Donaldson) For k À 0, the bundles
Lk admit pairs of A.H. sections which endow X with
a structure of symplectic Lefschetz pencil.

Structure of the proof

1. existence of very localized A.H. sections of Lk

2. effective Sard theorem for A.H. functions :
⇒ get uniform transversality over a small ball.

3. globalization principle
(transversality is an open property).
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Branched coverings

dimX = 4 : nowhere vanishing section of C3 ⊗ Lk

⇒ f = (s0 : s1 : s2) : X → CP
2.

Definition. A map f : X → CP
2 is ε-holomorphically

modelled at x on g : C2 → C2 if ∃U 3 x, V 3 f (x),
and local C1-diffeomorphisms φ : U → C2 and ψ :
V → C2, ε-holomorphic, (i.e. |φ∗J − J0| < ε) such
that f|U = ψ−1 ◦ g ◦ φ.

Definition. A map f : X → CP
2 is an ε-holomorphic

covering branched along R ⊂ X if Df is surjective
everywhere except along R, and if f is locally ε-holo-
morphically modelled at any point of X on one of the
following maps :

– local diffeomorphism : (x, y) 7→ (x, y).

– branched covering : (x, y) 7→ (x2, y).

R : x = 0 f (R) : X = 0

– cusp : (x, y) 7→ (x3 − xy, y).

R : y = 3x2 f (R) : 27X2 = 4Y 3
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Existence of branched coverings

Theorem 3. For k À 0, there exist A.H. sections of
C3 ⊗ Lk which make X an εk-holomorphic branched
covering of CP

2, with εk = O(k−1/2).

Topological properties Ã analytic properties ?

Transversality conditions :

sk ∈ Γ(C3 ⊗ Lk) A.H., fk = P(sk), γ > 0 fixed.

(T1) |sk(x)| ≥ γ ∀x ∈ X .

(T2) |∂fk(x)|gk ≥ γ ∀x ∈ X .

Branching ≡ (2, 0)-Jacobian Jac(fk) = det(∂fk).

(T3) Jac(fk) is γ-transverse to 0.

⇒ R(sk) = Jac(fk)
−1(0) symplectic and smooth.

Angle between TR(sk) and Ker ∂fk Ã T (sk).

(T4) T (sk) is γ-transverse to 0.

⇒ zeros of T (sk) = isolated, non-degenerate cusps

Holomorphic case : (T1–T4) ⇒ branched covering.
Vanishing of ∂̄fk at the branch points ?
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J-compatibility conditions :

∃ J̃k compatible with ω, integrable near the cusps and
satisfying |J̃k − J | = O(k−1/2), such that

(C1) fk is J̃k-holomorphic near the cusps.

(C2) ∀x ∈ RJ̃k
(sk), Ker ∂fk(x) ⊂ Ker ∂̄fk(x).

Proposition. (sk)kÀ0 ∈ Γ(C3⊗Lk), A.H. , satisfying
(T1–T4) and (C1–C2)⇒ for k À 0, fk = P(sk) is an
εk-holomorphic branched covering, εk = O(k−1/2).

⇒ existence of sections satisfying (T1–T4) & (C1–C2) ?

– (T1–T4) : techniques ' construction of submanifolds.

• local transversality result : very localized perturba-
tion of sk Ã property over a small ball.

• globalization principle : combine the local pertur-
bations Ã property at any point of X .

– (C1–C2) : small perturbations near R(sk)
⇒ add to sk a quantity which exactly cancels ∂̄fk.
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Characterization of symplectic manifolds

Properties of constructed coverings w.r.t. the symplec-
tic structure ?

Proposition. The 2-forms ω̃t = t f ∗ω0 + (1 − t) kω
are symplectic ∀t ∈ [0, 1[, and (X, ω̃t) is then symplec-
tomorphic to (X, kω).

The property of being a branched covering of CP
2 char-

acterizes symplectic manifolds in dimension 4 :

Proposition. Let f : M 4 → CP
2 be a map which

identifies at any point with one of the three models for
branched coverings in local coordinates (A.H. chart on
CP

2, but not on M).
Then M admits a symplectic structure arbitrarily

close to f ∗ω0 in its cohomology class. This symplectic
structure is canonical up to symplectomorphism.
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Coverings and symplectic invariants

Theorem 4. For k À 0, the branched coverings ob-
tained from A.H. sections of C3⊗Lk are unique up to
isotopy, independently of the chosen J .

⇒ symplectic invariants of (X,ω).

D = f (R) ⊂ CP
2 is a symplectic curve.

Generic singularities :

1. r cusps.

2. r

+ nodes with positive transverse intersection.

3. r

− nodes with negative transverse intersection.

Theorem 4⇒ up to cancellation of nodes, the topology
of D is a symplectic invariant.

⇐⇒
q

+
q
−

⇒ extension of Moishezon and Teicher’s braid group
techniques to the symplectic case.
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Monodromy and braid groups

After perturbation, the curve D can be realized as a
singular branched covering of CP

1.

?π : (x0 : x1 : x2) 7→ (x0 : x1)
CP

1

CP
2 − {∞} D

degD = n

q q q

q q

q

Fiber ' C ⇒ restricting to C2 = π−1(C),
monodromy with values in the braid group Bn :

ρ : π1(C− crit)→ Bn.

The topology of D is described by a braid group fac-
torization, ∆2 =

∏
QiX

di
1 Q

−1
i , di ∈ {−2, 1, 2, 3} :

• r

r

r

r

r

di = 1

• r

+ r

r

r

r

di = 2

• r

r

r

r

r

di = 3

• r

− r

r

r

r

di = −2

Up to conjugation, Hurwitz moves and node elimina-
tions, this factorization is a symplectic invariant.
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Reconstructing a symplectic 4-manifold

Algebraic data characterizing a branched covering :

1. Braid factorization ∆2 =
∏
QiX

di
1 Q

−1
i .

2. Geometric monodromy representation

θ : π1(CP
2 −D)³ SN .

π1(CP
2 − D) is generated by “geometric generators”

(γi)1≤i≤n ; relations given by the braid factorization.

?πCP
1

CP
2

D

q q q

q q

q

γi

θ maps geometric generators to transpositions.
cusp ⇒ (12)(23), node ⇒ (12)(34).

Theorem 5. The braid factorization ∆2 determines D
up to smooth isotopy ; D and θ determine (X,ω) up
to symplectic isotopy.
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Branched coverings and
Lefschetz pencils

(X4, ω)
¡

¡
¡ª

@
@
@R

(Donaldson)

Symplectic Lefschetz
pencil

Branched covering

?πCP
1

CP
2 D

q q q

q q

q

?

CP
1

X̂sγi

s

¾

monodromy = Dehn twist

?

Factorization in the Factorization in the
mapping class group braid group

Id =
∏

i tγi
∆2 =

∏
iQiX

di
1 Q

−1
i

+ monodromy repn. θ.

6

?
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Branched coverings and
Lefschetz pencils

1. By forgetting one of the components (i.e. projecting
to CP

1), a branched covering becomes a symplectic
Lefschetz pencil.

⇒ alternate proof of Donaldson’s result.

2. θ : π1(CP
2 − D) → SN determines a subgroup

B0
n(θ) ⊂ Bn and a group homomorphism

θ∗ : B
0
n(θ)→ Mapg.

B0
n(θ) contains the image of the braid monodromy.

• the factors of degree ±2 or 3 lie in the kernel of θ∗.

• θ∗ maps the factors of degree 1 to Dehn twists.

r r

half-twist

-
¾

θ∗−→ r r

Dehn twist along
a lift of γ

γ

⇒ ∆2 and θ allow the explicit computation of the
monodromy of the corresponding Lefschetz pencil.
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