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Introduction

X compact Kahler manifold, L ample bundle.
Holomorphic sections of L¥. k> 0
= projective embedding X — CP" (Kodaira).
= smooth hypersurfaces (Bertini).

X complex surface, 3 generic sections of L*
= f: X — CP? branched covering,

singularities = cusps + nodes.

(X" w) compact symplectic manifold
dJ compatible almost-complex structure.

J is not integrable
= no holomorphic coordinates
= no holomorphic sections

Donaldson’s 1dea :

Approximately holomorphic sections
= symplectic analogues of classical results.



Asymptotically holomorphic sections

(X?", w) symplectic, compact

w] € H*(X,Z) (not restrictive)
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J compatible with w ; ¢(.,.) = w(., J.)
L = - |w]

o L line bundle such that ¢;(L) %[
e |-z ; VL. curvature —iw

Definition. (s)rso € I'(Ey) are asymptotically holo-
morphic (“A.H.") if

Vp € N, ‘Sk‘Cp,gk == 0(1) and ‘5815‘01979]{ = O(k_l/Q).

Definition. (s;)rso € I'(E)) are uniformly transverse
to 0 if An > 0 /sy is n-transverse to 0 Vk, i.e.

Ve € X, |si(x)| < n= Vsi(x) surjective and > n.

Proposition. Let (sp)pso € U'(Ey), AH. and uni-
formly transverse to 0 : then for k>0, Wy = s; (0)
is a symplectic submanifold of X (approximately J-
holomorphic).



Symplectic submanifolds and beyond

Theorem 1 (Donaldson) For k > 0, the bundles
L¥ admit sections which are A.H. and uniformly trans-
verse to 0.

= construction of symplectic submanifolds.

Theorem 2 (Donaldson) For k > 0, the bundles
L¥ admit pairs of A.H. sections which endow X with
a structure of symplectic Lefschetz pencil.

Structure of the proof

1. existence of very localized A.H. sections of L*

2. effective Sard theorem for A.H. functions :
= get uniform transversality over a small ball.

3. globalization principle
(transversality is an open property).



Branched coverings

dim X = 4 : nowhere vanishing section of C* @ L*
= f=(s":5":5%): X — CP

Definition. A map f : X — CP? is e-holomorphically
modelled at x on g : C* — C* if 3U 32, V > f(x),
and local C-diffeomorphisms ¢ : U — C? and v :
V — C?, e-holomorphic, (i.e. |¢p.J — Jo| < €) such
that fiir = Y~ logodg.

Definition. A map f : X — CP? is an e-holomorphic
covering branched along R C X if Df is surjective
everywhere except along R, and if f 1s locally e-holo-
morphically modelled at any point of X on one of the
following maps :

— local diffeomorphism : (x,y) — (x,y). ? ?

— branched covering : (z,y) — (z°,y).

R:ax=0  f(R): X=0 § X ;
—cusp : (z,y) = (27 — 2y, y).

R: y=322 f(R): 27X%—4Y3 Lé—/




Existence of branched coverings

Theorem 3. For k > 0, there exist A.H. sections of
C3 @ L* which make X an €,-holomorphic branched
covering of CP?, with ¢, = O(k~'/?).

Topological properties ~» analytic properties 7

Transversality conditions :
sy €T(CP® LY AH., fi, =P(sp), v > 0 fixed.

(T1) [si(2)| > 7 Vo € X

(T2) 10fia)ly, > 7 Vo € X
Branching = (2, 0)-Jacobian Jac(f;) = det(0f).
('T3) Jac( fr) is y-transverse to 0.

= R(s;) = Jac(fr)"*(0) symplectic and smooth.
Angle between T'R(sy) and Ker 0f; ~» T (sy).

(T4) 7 (sy) is y-transverse to 0.

= zeros of 7 (s) = isolated, non-degenerate cusps

Holomorphic case : (T1-T4) = branched covering.
Vanishing of 0 f; at the branch points 7
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J-compatibility conditions :

3 J; compatible with w, integrable near the cusps and
satisfying |J, — J| = O(k~Y?), such that

(C1) f is Ji-holomorphic near the cusps.
(C2) Vo € Rj (sk), Ker df(z) C Ker O fr(x).

Proposition. (s;)rso € [(C*®@ LF), A.H. | satisfying
(T1-T4) and (C1-C2) = fork >0, fi, = P(sg) is an
ex-holomorphic branched covering, €, = O(k™1/?).

= existence of sections satisfying (T1-T4) & (C1-C2) ?

— (T1-T4) : techniques ~ construction of submanifolds.
o local transversality result : very localized perturba-
tion of s, ~ property over a small ball.

o globalization principle : combine the local pertur-
bations ~~ property at any point of X.

— (C1-C2) : small perturbations near R(sy) i
= add to s, a quantity which exactly cancels 0f.



Characterization of symplectic manifolds

Properties of constructed coverings w.r.t. the symplec-
tic structure 7

Proposition. The 2-forms &; = t ffwy + (1 — t) kw
are symplectic ¥Vt € [0, 1], and (X, ;) is then symplec-
tomorphic to (X, kw).

The property of being a branched covering of CPP? char-
acterizes symplectic manifolds in dimension 4 :

Proposition. Let f : M* — CP? be a map which
identifies at any point with one of the three models for
branched coverings in local coordinates (A.H. chart on
CP?, but not on M ).

Then M admits a symplectic structure arbitrarily
close to f*wqy in its cohomology class. This symplectic
structure is canonical up to symplectomorphism.



Coverings and symplectic invariants

Theorem 4. For k > 0, the branched coverings ob-
tained from AH. sections of C*® LF are unique up to
isotopy, independently of the chosen J.

= symplectic invariants of (X, w).

D = f(R) c CP? is a symplectic curve.

Generic singularities :

. >— cusps.

_|_ N [ N N
. >< nodes with positive transverse intersection.

. >_< nodes with negative transverse intersection.

Theorem 4 = up to cancellation of nodes, the topology
of D is a symplectic invariant.

_|_

T N
VD N N

= extension of Moishezon and Teicher’s braid group
techniques to the symplectic case.
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Monodromy and braid groups

After perturbation, the curve D can be realized as a
singular branched covering of CP!.

CP* — {o0} D

degD =n

CP! ;17:(2%3’0:$11$2)I—>(x0:$1)

Fiber ~ C = restricting to C* = 7~ 1(C),
monodromy with values in the braid group B,, :

p:m(C —crit) — B,.

The topology of D is described by a braid group fac-
torization, A% = [ Q; Xfi Q;l, d; € {—2,1,2,3} :
/

° (di: >
o X di=2 ([T
o > di=3 [T

o X di=—2 ([T
%

Up to conjugation, Hurwitz moves and node elimina-
tions, this factorization is a symplectic invariant.

™
NN

™N N\
NN

™ \g
NN

N
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Reconstructing a symplectic 4-manifold

Algebraic data characterizing a branched covering :
1. Braid factorization A* =[] Q; Xfl”‘ Q.
2. Geometric monodromy representation

0 : m(CP* — D) — Sy.

7T1(C]P)2 — D) is generated by “geometric generators”
(vi)1<i<n ; relations given by the braid factorization.

> "

6 maps geometric generators to transpositions.
cusp = (12)(23), node = (12)(34).

Theorem 5. The braid factorization A* determines D

up to smooth isotopy ; D and 6 determine (X,w) up
to symplectic isotopy.
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Branched coverings and
Lefschetz pencils

(X w)

(Donaldson) / \

Symplectic Letfschetz Branched covering

pencil
d i X d
0 ) )
CP! C—‘D

monodromy — Dehn twist

|

Factorization in the
mapping class group

Id=1],¢,

Factorization in the
braid group

A = Hz QiniQi_l

|
|
|
|
|
|
|
|
|
|
|
|
: -+ monodromy repn. 6.

T |
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Branched coverings and
Lefschetz pencils

1. By forgetting one of the components (i.e. projecting
to (CIP’l), a branched covering becomes a symplectic
Lefschetz pencil.

= alternate proof of Donaldson’s result.

2.0 : 7Tl((CIP’2 — D) — Sy determines a subgroup
BY(0) C B,, and a group homomorphism

0. : B)() — Map,.
BY(0) contains the image of the braid monodromy.

e the factors of degree 42 or 3 lie in the kernel of 0.

e 0, maps the factors of degree 1 to Dehn twists.

= | LD

half-twist Dehn twist along
a lift of ~

= A? and 0 allow the explicit computation of the
monodromy of the corresponding Letschetz pencil.
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