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1. Introduction

The phenomenon of Mirror Symmetry, in its “classical” version, was first observed for Calabi-Yau manifolds,

and mathematicians were introduced to it through a series of remarkable papers [20, 13, 38, 40, 15, 30, ...]. Some

very strong conjectures have been made about its topological interpretation – e.g. the Strominger-Yau-Zaslow

conjecture. In a different direction, the framework of mirror symmetry was extended by Batyrev, Givental,

Hori, Vafa, etc. to the case of Fano manifolds.

In this paper, we approach mirror symmetry for Fano manifolds from the point of view suggested by the

work of Kontsevich and his remarkable Homological Mirror Symmetry (HMS) conjecture [27]. We extend the

previous investigations in the following two directions:

• Building on recent works by Seidel [34], Hori and Vafa [23] (see also an earlier paper by Witten [41]),

we prove HMS for some Fano manifolds, namely weighted projective lines and planes, and Hirzebruch

surfaces. This extends, at a greater level of generality, a result of Seidel [35] concerning the case of the

usual CP2.
• We obtain the first explicit description of the extension of HMS to noncommutative deformations of

Fano algebraic varieties.

In the long run, the goal is to explore in greater depth the fascinating ties brought forth by HMS between com-

plex algebraic geometry and symplectic geometry, hoping that the currently more developed algebro-geometric

methods will open a fine opportunity for obtaining new interesting results in symplectic geometry. We first

describe the results of this paper in some more detail.

Most of the classical works on string theory deal with the case of N = 2 superconformal sigma models

with a Calabi-Yau target space. In this situation the corresponding field theory has two topologically twisted

versions, the A- and B-models, with D-branes of types A and B respectively. Mirror symmetry interchanges

these two classes of D-branes. In mathematical terms, the category of B-branes on a Calabi-Yau manifold X is

the derived category of coherent sheaves on X, Db(coh(X)). The so-called (derived) Fukaya category DF(Y )

has been proposed as a candidate for the category of A-branes on a Calabi-Yau manifold Y ; in short this is a

category whose objects are Lagrangian submanifolds equipped with flat vector bundles. The HMS Conjecture

claims that if two Calabi Yau manifolds X and Y are mirrors to each other then Db(coh(X)) is equivalent to

DF(Y ).

Physicists also consider more general N = 2 supersymmetric field theories and the corresponding D-branes;

among these, two families of theories are of particular interest to us: on one hand, sigma models with a Fano

variety as target space, and on the other hand, N = 2 Landau-Ginzburg models. Mirror symmetry puts the

former in correspondence with a certain subclass of the latter. In particular, B-branes on a Fano variety are

described by the derived category of coherent sheaves, and under mirror symmetry they correspond to the A-

branes of a mirror Landau-Ginzburg model. These A-branes are described by a suitable analogue of the Fukaya

category, namely the derived category of Lagrangian vanishing cycles.

In order to demonstrate this feature of mirror symmetry, we use a procedure introduced by Batyrev [8],

Givental [18], Hori and Vafa [23], which we will call the toric mirror ansatz. Starting from a complete intersection

Y in a toric variety, this procedure yields a description of an affine subset of its mirror Landau-Ginzburg model

(to obtain a full description of the mirror it is usually necessary to consider a partial (fiberwise) compactification)

– an open symplectic manifold (X,ω) and a symplectic fibration W : X → C (see e.g. [24]).

Following ideas of Kontsevich [28] and Hori-Iqbal-Vafa [22], Seidel rigorously defined (in the case of non-

degenerate critical points) a derived category of Lagrangian vanishing cycles D(Lagvc(W )) [34], whose objects

represent A-branes on W : X → C.
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In the case of Fano manifolds the statement of the HMS conjecture is the following:

Conjecture 1.1. The category of A-branes D(Lagvc(W )) is equivalent to the derived category of coherent

sheaves (B-branes) on Y .

We will prove this conjecture for various examples.

There is also a parallel statement of HMS relating the derived category of B-branes on W : X → C, whose
definition was suggested by Kontsevich and carried out algebraically in [33], and the derived Fukaya category of

Y . Since very little is known about these Fukaya categories, we will not discuss the details of this statement in

the present paper. Our hope in this direction is that algebro-geometric methods will allow us to look at Fukaya

categories from a different perspective.

The case we will be mainly concerned with in this paper is that of the weighted projective plane CP2(a, b, c)
(where a, b, c are three mutually prime positive integers). Its mirror is the affine hypersurface X = {xaybzc =
1} ⊂ (C∗)3, equipped with an exact symplectic form ω and the superpotentialW = x+y+z. Our main theorem

is:

Theorem 1.2. HMS holds for CP2(a, b, c) and its noncommutative deformations.

Namely, we show that the derived category of coherent sheaves (B-branes) on the weighted projective plane

CP2(a, b, c) is equivalent to the derived category of vanishing cycles (A-branes) on the affine hypersurface X ⊂
(C∗)3. Moreover, we also show that this mirror correspondence between derived categories can be extended to

toric noncommutative deformations of CP2(a, b, c) where B-branes are concerned, and their mirror counterparts,

non-exact deformations of the symplectic structure of X where A-branes are concerned.

Observe that weighted projective planes are rigid in terms of commutative deformations, but have a one-

dimesional moduli space of toric noncommutative deformations (CP2 also has some other noncommutative

deformations, see §6.2). We expect a similar phenomenon to hold in many cases where the toric mirror ansatz

applies. An interesting question will be to extend this correspondence to the case of general noncommutative

toric vareties.

We will also consider some other examples besides weighted projective planes, in order to demonstrate the

ubiquity of HMS:

• as a warm-up example, we give a proof of HMS for weighted projective lines (a result also announced

by D. van Straten in [39]).

• we also discuss HMS for Hirzebruch surfaces Fn. For n ≥ 3, the canonical class is no longer negative (Fn
is not Fano), and HMS does not hold directly, because some modifications of the toric mirror ansatz are

needed, as already noticed in [22]. The direct application of the ansatz produces a Landau-Ginzburg

model whose derived category of vanishing cycles is identical to that on the mirror of the weighted

projective plane CP2(1, 1, n). In order to make the HMS conjecture work we need to restrict ourselves

to an open subset in the target space X of this Landau-Ginzburg model.

• we will also outline an idea of the proof of HMS (missing only some Floer-theoretic arguments about

certain moduli spaces of pseudo-holomorphic discs) for some higher-dimensional Fano manifolds, e.g.

CP3.

A word of warning is in order here. We do not describe completely and do not make use of the full potential

of the toric mirror ansatz in this paper. Indeed we do not compactify and desingularize the open manifold X.

Compactification and desingularization procedures will be addressed in full detail in future papers [5] dealing

with the cases of more general Fano manifolds and manifolds of general type, where these extra steps are needed

in order to exhibit the whole category of D-branes of the Landau-Ginzburg model. In this paper we work with
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specific examples for which compactification and desingularization are not needed (conjecturally this is the case

for all toric varieties). However there are two principles which are readily apparent from these specific examples:

• noncommutative deformations of Fano manifolds are related to variations of the cohomology class of

the symplectic form on the mirror Landau-Ginzburg models;

• even in the toric case, a fiberwise compactification of the Landau-Ginzburg model is required in order

to obtain general noncommutative deformations. The noncompact case then arises as a limit where the

symplectic form on the compactified fiber acquires poles along the compactification divisor.

Moreover there are two features of HMS for toric varieties, which become apparent in this paper and which

we would like to emphasize:

• it is important to think of singular toric varieties as smooth quotient stacks. As a consequence of the

work of Cox [14] this characterization is possible in many cases;

• as suggested by our specific examples, we would like to conjecture that the derived category of coherent

sheaves over a smooth toric quotient stack is always generated by an exceptional collection of line

bundles.

The paper is organized as follows. In Chapter 2 we give a detailed description of derived categories of coherent

sheaves over weighted projective spaces and some of their noncommutative deformations. After recalling the

definition of the weighted projective space P(a) as a quotient stack, we describe the category of coherent sheaves

over P(a) and its noncommutative deformations Pθ(a), and describe explicitly generating exceptional collections

for Db(coh(Pθ(a))) (Theorem 2.12 and Corollary 2.27). This is a novel result, and we believe that it suggests

a procedure that applies to many other examples of noncommutative toric varieties. We also discuss derived

categories of coherent sheaves over Hirzebruch surfaces.

In Chapter 3 we introduce the category of Lagrangian vanishing cycles associated to a Lefschetz fibration,

and outline the main steps involved in its determination; to illustrate the definitions, we treat the case of the

mirror of a weighted projective line. After this warm-up, in Chapter 4 we turn to our main examples, namely

the Landau-Ginzburg models mirror to weighted projective planes and their non-exact symplectic deformations.

More precisely we start by studying the vanishing cycles and their intersection properties, which allows us to

determine all the morphisms in Lagvc (Lemma 4.3). Next we study moduli spaces of pseudo-holomorphic discs

in the fiber in order to determine Floer products (Lemmas 4.4–4.5); this gives formulas for compositions of

morphisms and higher products in Lagvc (the latter turn out to be identically zero). Finally, after a discussion

of Maslov index and grading, we establish an explicit correspondence between deformation parameters on both

sides (noncommutative deformation of the weighted projective plane, and complexified Kähler class on the

mirror) and complete the proof of Theorem 1.2.

Chapter 5 deals with the case of mirrors to Hirzebruch surfaces, showing how their categories of Lagrangian

vanishing cycles relate to those of mirrors to weighted projective planes CP2(n, 1, 1). In particular we prove

HMS for Fn when n ∈ {0, 1, 2}, and show how for n ≥ 3 a certain degenerate limit of the Landau-Ginzburg

model singles out a full subcategory of Lagvc whose derived category is equivalent to that of coherent sheaves

on the Hirzebruch surface.

Finally, in Chapter 6 we make various observations and concluding remarks, related to the following directions

for future research:

• HMS for Del Pezzo surfaces, and for higher-dimensional weighted projective spaces (cf. §6.1 for a

discussion of the case of CP3);
• HMS for general (non toric) noncommutative deformations (cf. §6.2 for a discussion of the case of CP2);
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• the “other side” of HMS – relating derived Fukaya categories to derived categories of B-branes on the

mirror Landau-Ginzburg model.

Another topic that will be investigated in a forthcoming paper [6] is HMS for products: our considerations

for F0 = CP1 × CP1 suggest a certain product formula on both sides of HMS – if we consider two manifolds

Y1, Y2 with mirror Landau-Ginzburg models (X1,W1) and (X2,W2), then the mirror of Y1 × Y2 is simply

(X1 ×X2,W1 +W2), and we have the following general conjecture:

Conjecture 1.3. D(Lagvc(W1 +W2)) is equivalent to the product D(Lagvc(W1)⊗ Lagvc(W2)).

More precisely, the vanishing cycles of W1 +W2 are in one-to-one correspondence with pairs of vanishing

cycles of W1 and W2, and it can be checked (cf. §6.3) that

HomLagvc(W1+W2)((A1, A2), (B1, B2)) ' HomLagvc(W1)(A1, B1)⊗HomLagvc(W2)(A2, B2).

The conjecture asserts that Floer products behave in the expected manner with respect to these isomorphisms.

Acknowledgements: We are thankful to P. Seidel for many helpful discussions and explanations concerning

categories of Lagrangian vanishing cycles, and to A. Kapustin for explaining some features of HMS for Hirze-

bruch surfaces and pointing out some references. We have also benefitted from discussions with A. Bondal,
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9878353 and NSA grant H98230-04-1-0038. DO was partially supported by the Russian Foundation for Basic

Research (grant No. 02-01-00468), Russian Presidential grant for young scientists No. MD-2731.2004.1, CRDF

Award No. RM1-2405-MO-02, and the Russian Science Support Foundation.

2. Weighted projective spaces

2.1. Weighted projective spaces as stacks. We start by reviewing definitions from the theory of weighted

projective spaces.

Let k be a base field. Let a0, . . . , an be positive integers. Define the graded algebra S = S(a0, . . . , an) to be

the polynomial algebra k[x0, . . . , xn] graded by deg xi = ai. Classically the projective variety ProjS is called

the weighted projective space with weights a0, . . . , an and is denoted by P(a0, . . . , an). Consider the action

of the algebraic group Gm = k∗ on the affine space An+1 given in some affine coordinates x0, . . . , xn by the

formula

(2.1) λ(x0, . . . , xn) = (λa0x0, . . . , λ
anxn).

In geometric terms, the weighted projective space P(a0, . . . , an) is the quotient variety (An+1\0)
/
Gm under

the induced action of the group Gm.

The variety P(a0, . . . , an) is a rational n-dimensional projective variety, singular in general, whose affine

pieces xi 6= 0 are isomorphic to An
/
Zai . For example, the variety P(1, 1, n) is the projective cone over a twisted

rational curve of degree n in Pn.

Denote by a the vector (a0, . . . , an) and write P(a) instead P(a0, . . . , an) for brevity.

There is also another way to define the quotient of the action above: in the category of stacks. The quotient

stack [
(An+1\0)

/
Gm

]
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will be denoted by P(a) and will also be called the weighted projective space. The stack P(a) is smooth, and

from many points of view it is a more natural object than P(a).

We now review the notion of stack as needed to understand our main example – weighted projective spaces.

A detailed treatment of algebraic stacks can be found in [29] and [17].

There are two ways of thinking about an algebraic stack:

a) as a category X , with additional properties;

b) from an atlas R⇒ U, with R and U schemes, R determining an equivalence relation on U.

From the categorical point of view a stack is a category X fibered in groupoids p : X → Sch over the category

Sch of k-schemes, satisfying two descent (sheafy) properties in étale topology. An algebraic stack has to satisfy

some additional representability conditions. For the precise definition see [29, 17].

Any scheme X ∈ Sch defines a category Sch /X: its objects are pairs (S, φ) with {S φ→ X} a map in Sch,

and a morphism from (S, φ) to (T, ψ) is a morphism f : T → S such that φf = ψ. The category Sch /X comes

with a natural functor to Sch. Thus, any scheme is an algebraic stack.

Another example, the most important one for us, comes from an action of an algebraic groupG on a schemeX.

The quotient stack [X/G] is defined to be the category whose objects are those G-torsors (principal homogeneous

right G-schemes) G → S which are locally trivial in the étale topology, together with a G-equivariant map from

G to X.

In order to work with coherent sheaves on a stack it is convenient to use an atlas for the stack. We describe

very briefly groupoid presentations (or atlases) of algebraic stacks. A pair of schemes R and U with morphisms

s, t, e,m, i, satisfying certain group-like properties, is called a groupoid in Sch or an algebraic groupoid. For any

scheme S the morphisms s, t : R→ U (“source” and “target”) determine two maps from the set Hom(S,R) to

the set Hom(S,U). A quick way to state all relations between s, t, e,m, i is to say that the induced morphisms

make the “objects” Hom(S,U) and “morphisms” Hom(S,R) into a category in which all arrows are invertible.

We will denote an algebraic groupoid by R⇒ U, omitting the notations for e,m, and i.

Any scheme X determines a groupoid X ⇒ X, whose morphisms are identity maps. The main example for

us is the transformation groupoid associated to an algebraic group action X ×G→ X, which provides an atlas

for the quotient stack [X/G] . The transformation groupoid X ×G⇒ X is defined by

s(x, g) = x, t(x, g) = x · g, m((x, g), (x · g, h)) = (x, g · h), e(x) = (x, eG), i(x, g) = (x · g, g−1).

If R⇒ U is an atlas for a stack X , giving a coherent sheaf on X is equivalent to giving a coherent sheaf F on

U, together with an isomorphism s∗F ∼→ t∗F on R satisfying a cocycle condition on Rt×
U
sR. In particular, for a

quotient stack [X/G] the category of coherent sheaves is equivalent to the category of G-equivariant sheaves on

X due to effective descent for strictly flat morphisms of algebraic stacks (see, e.g., [29], Thm. 13.5.5). Applying

this fact to weighted projective spaces, we obtain that

(2.2) coh(P(a)) ∼= cohGm

a (An+1\0),

where cohGm

a (An+1\0) is the category of Gm-equivariant coherent sheaves on (An+1\0) with respect to the

action given by rule (2.1).

2.2. Coherent sheaves on weighted projective spaces. Let A =
⊕
i≥0

Ai be a finitely generated graded

algebra. Denote by mod(A) the category of finitely generated right A-modules and by gr(A) the category of

finitely generated graded right A-modules in which morphisms are the homomorphisms of degree zero. Both

are abelian categories.

Denote by tors(A) the full subcategory of gr(A) which consists of those graded A-modules which have finite

dimension over k.
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Definition 2.1. Define the category qgr(A) to be the quotient category gr(A)/ tors(A). The objects of qgr(A)

are the objects of the category gr(A) (we denote by M̃ the object in qgr(A) which corresponds to a module M).

The morphisms in qgr(A) are defined to be

Homqgr(M̃, Ñ) = lim
−→

M ′

Homgr(M
′, N),

where M ′ runs over all submodules of M such that M/M ′ is finite dimensional over k.

The category qgr(A) is an abelian category and there is a shift functor on it: for a given graded module

M =
⊕
i≥0

Mi the shifted moduleM(p) is defined byM(p)i =Mp+i, and the induced shift functor on the quotient

category qgr(A) sends M̃ to M̃(p) = M̃(p).

Similarly, we can consider the category Gr(A) of all graded right A-modules. It contains the subcategory

Tors(A) of torsion modules. Recall that a moduleM is called torsion if for any element x ∈M one has xA≥s = 0

for some s, where A≥s =
⊕
i≥s

Ai.We denote by QGr(A) the quotient category Gr(A)/Tors(A). It is clear that the

intersection of the categories qgr(A) and Tors(A) in the category QGr(A) coincides with tors(A). In particular,

the category QGr(A) contains qgr(A) as a full subcategory. Sometimes it is convenient to work with QGr(A)

instead of qgr(A).

In the case when the algebra A =
⊕
i≥0

Ai is a commutative graded algebra generated over k by its first

component (which is assumed to be finite dimensional) J.-P. Serre [37] proved that the category of coherent

sheaves coh(X) on the projective variety X = ProjA is equivalent to the category qgr(A). Such an equivalence

also holds for the category of quasicoherent sheaves on X and the category QGr(A) = Gr(A)/Tors(A).

This theorem can be extended to general finitely generated commutative algebras if we work at the level of

quotient stacks.

Let S =
∞⊕
p=0

Sp be a commutative graded k-algebra which is connected, i.e. S0 = k. The grading on S induces

an action of the group Gm on the affine scheme SpecS. Let 0 be the closed point of SpecS that corresponds

to the ideal S+ = S≥1 ⊂ S. This point is invariant under the action.

Definition 2.2. Denote by ProjS the quotient stack
[
(SpecS\0)

/
Gm

]
.

There is a natural map ProjS → ProjS, which is an isomorphism when the algebra S is generated by its

first component S1.

Proposition 2.3. Let S = ⊕
i≥0

Si be a graded finitely generated algebra. Then the category of (quasi)coherent

sheaves on the quotient stack Proj (S) is equivalent to the quotient category qgr(S) (resp. QGr(S)).

Proof. Let 0 be the closed point on the affine scheme SpecS which corresponds to the maximal ideal S+ ⊂ S.
Denote by U the scheme (SpecS\0). We know that the category of (quasi)coherent sheaves on the stack ProjS
is equivalent to the category of Gm-equivariant (quasi)coherent sheaves on U. The category of (quasi)coherent

sheaves on U is equivalent to the quotient of the category of (quasi)coherent sheaves on SpecS by the sub-

category of (quasi)coherent sheaves with support on 0. This is also true for the categories of Gm-equivariant

sheaves. But the category of (quasi)coherentGm-equivariant sheaves on SpecS is just the category gr(S) (resp.

Gr(S)) of graded modules over S, and the subcategory of (quasi)coherent sheaves with support on 0 coincides

with the subcategory tors(S) (resp. Tors(S)). Thus, we obtain that coh(ProjS) is equivalent to the quotient

category qgr(S) = gr(S)/ tors(S) (and Qcoh(ProjS) is equivalent to QGr(S) = Gr(S)/Tors(S)). ¤

Corollary 2.4. The category of (quasi)coherent sheaves on the weighted projective space P(a) is equivalent to

the category qgr(S(a0, . . . , an)) (resp. QGr(S(a0, . . . , an))).
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We conclude this section by giving the definition of noncommutative weighted projective spaces and the

categories of coherent sheaves on them. Consider a matrix θ = (θij) of dimension (n+1)× (n+1) with entries

θij ∈ k∗ for all i, j. The set of all such matrices will be denoted by M(n+ 1,k∗). Consider the graded algebra

Sθ = Sθ(a0, . . . , an) generated by elements xi, i = 0, . . . , n of degree ai and with relations

θijxixj = θjixjxi

for all i and j. This algebra is a noncommutative deformation of the algebra S(a0, . . . , an). It can be easily

checked that the algebra Sθ depends only on the matrix θan, with entries

(2.3) θanij := θijθ
−1
ji for all 0 ≤ i, j ≤ n.

Thus, if (θ′)an = θan for two matrices θ′ and θ, then Sθ′ ∼= Sθ.

As before, denote by qgr(Sθ) the quotient category gr(Sθ)/ tors(Sθ), where gr(Sθ) is the category of finitely

generated graded right Sθ-modules and tors(A) is the full subcategory of gr(Sθ) consisting of graded modules

of finite dimension over k.

Corollary 2.4 suggests that the category qgr(Sθ) can be considered as the category of coherent sheaves on a

noncommutative weighted projective space. We will denote this space by Pθ(a) and will write coh(Pθ) instead
qgr(Sθ). Similarly, the category of quasi-coherent sheaves Qcoh(Pθ) is defined as the quotient QGr(Sθ) =

Gr(Sθ)/Tors(Sθ).

2.3. Cohomological properties of coherent sheaves on Pθ(a). In this section we discuss properties of

categories of coherent sheaves on the noncommutative weighted projective spaces Pθ(a). Note that the usual

commutative weighted projective space is a particular case of the noncommutative one, when θ is the matrix

with all entries equal to 1.

All algebras Sθ(a0, . . . , an) are noetherian. This follows from the fact that they are Ore extensions of com-

mutative polynomial algebras (see for example [31]). For the same reason the algebras Sθ(a0, . . . , an) have

finite right (and left) global dimension, which is equal to (n + 1) (see [31], p. 273). Recall that the global

dimension of a ring A is the minimal number d (if it exists) such that for any two modules M and N we have

Extd+1A (M,N) = 0.

The notion of a regular algebra was introduced in [1]. As we will see below, regular algebras have many good

properties. More details can be found in [3].

Definition 2.5. A graded algebra A is called regular of dimension d if it satisfies the following conditions:

(1) A has global dimension d,

(2) A has polynomial growth, i.e. dimAp ≤ cpδ for some c, δ ∈ R,
(3) A is Gorenstein, meaning that ExtiA(k, A) = 0 if i 6= d, and ExtdA(k, A) = k(l)

for some l. The number l is called the Gorenstein parameter.

Here ExtA stands for the Ext functor in the category of right modules mod(A).

Proposition 2.6. The algebra Sθ(a0, . . . , an) is a noetherian regular algebra of global dimension n + 1. The

Gorenstein parameter l of this algebra is equal to the sum
n∑
i=0

ai.

Proof. Property (1) holds, as for all Ore extensions of commutative polynomial algebras. Property (2) holds

because our algebras have the same growth as ordinary polynomial algebras. Property (3) follows from the
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following Koszul resolution of the right module kSθ

(2.4) 0→ Sθ(−
n∑

i=0

ai)→
⊕

i0<...<in−1

Sθ(−
n−1∑

j=0

aij )→ · · ·

· · · →
⊕

i0<i1

Sθ(−ai0 − ai1)→
n⊕

i=0

Sθ(−ai)→ Sθ → kSθ → 0,

and the fact that the transposed complex is a resolution of the left module Sθk, shifted to the degree l =
∑
ai.

The explicit formula for the differentials in the complex (2.4) will be given later (see (2.8)). ¤

Denote by O(i) the object S̃θ(i) in the category coh(Pθ) = qgr(Sθ). Consider the sequence {O(i)}i∈Z. It can

be checked that the following properties hold true:

(a) For any coherent sheaf F there are integers k1, . . . , ks and an epimorphism

s
⊕
i=1
O(−ki)→ F .

(b) For every epimorphism F → G the induced map Hom(O(−n),F) → Hom(O(−n),G) is surjective for

nÀ 0.

A sequence which satisfies such conditions will be called ample. It is proved in [3] that the sequence {O(i)}
is ample in qgr(A) for any graded right noetherian k-algebra A if it satisfies the extra condition:

(χ1) : dimk Ext
1
A(k,M) <∞

for any finitely generated graded A-module M.

This condition can be verified for all noetherian regular algebras (see [3], Theorem 8.1). In particular, the

sequence {O(i)}i∈Z in the category coh(Pθ) is ample.

For any sheaf F ∈ qgr(A) we can define a graded module Γ(F) by the rule:

Γ(F) := ⊕
i≥0

Hom(O(−i),F)

It is proved in [3] that for any noetherian algebra A that satisfies the condition (χ1) the correspondence Γ is

a functor from qgr(A) to gr(A) and the composition of Γ with the natural projection π : gr(A) −→ qgr(A) is

isomorphic to the identity functor (see [3], § 3,4).
We formulate next a result about the cohomology of sheaves on noncommutative weighted projective spaces.

This result is proved in [3] (Theorem 8.1) for a general regular algebra and parallels the commutative case.

Proposition 2.7. Let Sθ = Sθ(a0, . . . , an) be the algebra of the noncommutative weighted projective space

Pθ = Pθ(a). Then

1) The cohomological dimension of the category coh(Pθ(a)) is equal to n, i.e. for any two coherent sheaves

F ,G ∈ coh(Pθ) the space Exti(F ,G) vanishes if i > n.

2) There are isomorphisms

(2.5) Hp(Pθ,O(k)) =





(Sθ)k for p = 0, k ≥ 0

(Sθ)
∗
−k−l for p = n, k ≤ −l

0 otherwise

This proposition and the ampleness of the sequence {O(i)} imply the following corollary.

Corollary 2.8. For any sheaf F ∈ coh(Pθ) and for all sufficiently large i À 0 we have Hk(Pθ,F(i)) = 0 for

all k > 0.
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Proof. The group Hk(Pθ,F(i)) coincides with Extk(O(−i),F). Let k be the maximal integer (it exists because

the global dimension is finite) such that for some F there exists arbitrarily large i such that Extk(O(−i),F) 6= 0.

Assume that k ≥ 1. Choose an epimorphism
s
⊕
j=1
O(−kj) → F . Let F1 denote its kernel. Then for i >

max{kj} we have Ext>0(O(−i),
s
⊕
j=1
O(−kj)) = 0, hence Extk(O(−i),F) 6= 0 implies Extk+1(O(−i),F1) 6= 0.

This contradicts the assumption of the maximality of k. ¤

One of the useful properties of commutative smooth projective varieties is the existence of the dualizing sheaf.

Recall that a sheaf ωX is called dualizing if for any F ∈ coh(X) there are natural isomorphisms of k-vector

spaces

Hi(X,F) ∼= Extn−i(F , ωX)∗,

where ∗ denotes the k–dual space. The Serre duality theorem asserts the existence of a dualizing sheaf for

smooth projective varieties. In this case the dualizing sheaf is a line bundle and coincides with the sheaf of

differential forms Ωn
X of top degree.

Since the definition of ωX is given in abstract categorical terms, it can be extended to the noncommutative

case as well. More precisely, we will say that qgr(A) satisfies classical Serre duality if there is an object

ω ∈ qgr(A) together with natural isomorphisms

Exti(O,−) ∼= Extn−i(−, ω)∗.

Our noncommutative varieties Pθ(a) satisfy classical Serre duality, with dualizing sheaves being O(−l), where
l =

∑
ai is the Gorenstein parameter for Sθ(a0, . . . , an). This follows from the paper [42], where the existence

of a dualizing sheaf in qgr(A) has been proved for a class of algebras which includes all noetherian regular

algebras. In addition, the authors of [42] showed that the dualizing sheaf coincides with Ã(−l), where l is the
Gorenstein parameter for A.

There is a reformulation of Serre duality in terms of bounded derived categories [11]. A Serre functor in the

bounded derived category Db(coh(Pθ)) is by definition an exact autoequivalence S of Db(coh(Pθ)) such that for

any objects X,Y ∈ Db(coh(Pθ)) there is a bifunctorial isomorphism

Hom(X,Y )
∼−→ Hom(Y, SX)∗.

Serre duality can be reinterpreted as the existence of a Serre functor in the bounded derived category.

2.4. Exceptional collection on Pθ(a). For many reasons it is more natural to work not with the abelian

category of coherent sheaves but with its bounded derived category Db(coh(Pθ)). The purpose of this section

is to describe the bounded derived category of coherent sheaves on the noncommutative weighted projective

spaces in the terms of exceptional collections.

First, we briefly recall the definition of the bounded derived category for an abelian category A. We start

with the category Cb(A) of bounded differential complexes

M
•
= (0 −→ · · · −→Mp dp−→Mp+1 d

p+1

−→ Mp+2 −→ · · · −→ 0), Mp ∈ A, p ∈ Z, d2 = 0.

A morphism of complexes f : M • −→ N• is called null-homotopic if fp = dNh
p + hp+1dM for all p ∈ Z and

some family of morphisms hp :Mp −→ Np−1. Now the homotopy category Hb(A) is defined as a category with

the same objects as Cb(A), whereas morphisms in Hb(A) are equivalence classes f of morphisms of complexes

modulo null-homotopic morphisms. A morphism of complexes s : N • → M• is called a quasi-isomorphism if

the induced morphisms Hps : Hp(N•) → Hp(M•) are isomorphisms for all p ∈ Z. Denote by Σ the class of

all quasi-isomorphisms. The bounded derived category Db(A) is now defined as the localization of Hb(A) with
respect to the class Σ of all quasi-isomorphisms. This means that the derived category has the same objects as
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the homotopy category Hb(A), and that morphisms in the derived category are given by left fractions s−1 ◦ f
with s ∈ Σ.

Remark 2.9. For any full subcategory E ⊂ A one can construct the homotopy category Hb(E) and a functor

Hb(E) → Db(A). In some cases, for example when A is the abelian category of modules over an algebra A

of finite global dimension and E is the subcategory of projective modules, this functor Hb(E) → Db(A) is an

equivalence of triangulated categories.

Second, we recall the notion of an exceptional collection.

Definition 2.10. An object E of a k-linear triangulated category D is said to be exceptional if Hom(E,E[k]) = 0

for all k 6= 0, and Hom(E,E) = k.

An ordered set of exceptional objects σ = (E0, . . . En) is called an exceptional collection if Hom(Ej , Ei[k]) = 0

for j > i and all k. The exceptional collection σ is called strong if it satisfies the additional condition

Hom(Ej , Ei[k]) = 0 for all i, j and for k 6= 0.

Definition 2.11. An exceptional collection (E0, . . . , En) in a category D is called full if it generates the category

D, i.e. the minimal triangulated subcategory of D containing all objects Ei coincides with D. We write in this

case

D = 〈E0, . . . , En〉 .

Consider the bounded derived category of coherent sheaves Db(coh(Pθ)). We prove that this category has

an exceptional collection which is strong and full. In this case we will say that the noncommutative weighted

projective space Pθ possesses a full strong exceptional collection.

Theorem 2.12. For any noncommutative weighted projective space Pθ(a) and for any k ∈ Z the ordered

set σ(k) = (O(k), . . . , O(k + l − 1)) , where l =
∑
ai is the Gorenstein parameter of Sθ, forms a full strong

exceptional collection in the category Db(coh(Pθ)).

Proof. It follows directly from Proposition 2.7 that the collection σ(k) is exceptional and strong. To prove that

the collection is full let us consider the triangulated subcategory D ⊂ Db(coh(Pθ)) generated by the collection

σ(k). The exact sequence (2.4) induces the exact sequence

(2.6) 0→ O(−
n∑

i=0

ai)→
⊕

i0<...<in−1

O(−
n−1∑

j=0

aij )→ · · ·

· · · →
⊕

i0<i1

O(−ai0 − ai1)→
n⊕

i=0

O(−ai)→ O → 0.

Shifting it by k+ l one obtains that the object O(k+ l) also belongs to D and repeating this procedure deduce

that O(i) for all i belongs to D. Assume that D does not coincide with Db(coh(Pθ)) and take an object U which

does not belong to D. It is proved in [10] (Theorem 3.2) that the subcategory D is admissible, i.e. the natural

embedding functor D ↪→ Db(coh(Pθ)) has right and left adjoint functors. Denote by j the right adjoint and

complete the canonical map jU −→ U to a distinguished triangle

jU −→ U −→ C −→ jU [1].

It follows from adjointness that for any object V ∈ D the space Hom(V,C) vanishes. The object C is a bounded

complex of coherent sheaves. Denote by Hk(C) the leftmost nontrivial cohomology of the complex C. The

ampleness of the sequence {O(i)}i∈Z guarantees that for sufficiently large i the space Hom(O(−i), Hk(C)) is

nontrivial. This implies that Hom(O(−i)[−k], C) is nontrivial, which contradicts to the fact that the object

O(−i)[−k] belongs to D. ¤
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The strong exceptional collection on the ordinary projective space Pn was constructed by Beilinson in [9].

This question for the weighted projective spaces was considered in [7].

Definition 2.13. The algebra of the strong exceptional collection (E0, . . . , En) is the algebra of endomorphisms

of the object
n
⊕
i=0

Ei. Denote by Tθ the sheaf
l−1
⊕
i=0
O(i) and by Bθ the algebra of the collection (O, . . . ,O(l − 1)) on

the noncommutative weighted projective space Pθ, i.e. Bθ = End(Tθ).

The algebra Bθ is a finite dimensional algebra over k. Denote by mod–Bθ the category of finitely generated

right modules over Bθ. For any coherent sheaf F ∈ coh(Pθ) the space Hom(Tθ,F) has a structure of right

Bθ-module. Denote by Pi the modules Hom(Tθ,O(i)) for i = 0, . . . , (l− 1). All these are projective Bθ-modules

and Bθ =
l−1
⊕
i=0

Pi. The algebra Bθ has l primitive idempotents ei, i = 0, . . . , l− 1 such that 1Bθ
= e0 + · · ·+ el−1

and eiej = 0 if i 6= j. The right projective modules Pi coincide with eiBθ. The morphisms between them can

be easily described since

Hom(Pi, Pj) = Hom(eiBθ, ejBθ) ∼= ejBθei ∼= Hom(O(i),O(j)) = (Sθ)j−i.

Moreover, the algebra Bθ has finite global dimension. This follows from the fact that any right (and left)

module M has a finite projective resolution consisting of the projective modules Pi. Indeed the map

l−1⊕

i=0

Hom(Pi,M)⊗ Pi −→M

is surjective and there are no non-trivial homomorphisms from Pl−1 to the kernel of this map. Iterating this

procedure we get a finite resolution of M.

Sometimes it is useful to represent the algebra Bθ as a category Bθ which has l objects, say v0, . . . , vl−1, and

morphisms defined by

Hom(vi, vj) ∼= Hom(O(i),O(j)) ∼= (Sθ)j−i

with the natural composition law. Thus Bθ =
⊕

0≤i,j≤l−1

Hom(vi, vj).

The algebra Bθ is a basis algebra. This means that the quotient of Bθ by the radical rad(Bθ) is isomorphic to

the direct sum of l copies of the field k. The category mod–Bθ has l irreducible modules which will be denoted

Qi, i = 0, . . . , l − 1, and
l−1
⊕
i=0

Qi = Bθ/ rad(Bθ). The modules Qi are chosen so that Hom(Pi, Qj) ∼= δi,j k.

Our next topic is the notion of mutation in an exceptional collection. Let σ = (E0, . . . , En) be an exceptional

collection in a triangulated category D. Consider a pair (Ei, Ei+1) and the canonical maps

Hom
•
(Ei, Ei+1)⊗ Ei −→ Ei+1 and Ei −→ Hom

•
(Ei, Ei+1)

∗ ⊗ Ei+1,

where by definition

Hom
•
(Ei, Ei+1)⊗Ei =

⊕

k∈Z

Homk(Ei, Ei+1)⊗ Ei[−k],

Hom
•
(Ei, Ei+1)

∗ ⊗ Ei+1 =
⊕

k∈Z

Hom−k(Ei, Ei+1)⊗ Ei+1[−k]

(recall that the tensor product of a vector space V with an object X may be considered as the direct sum of

dimV copies of the object X).

We define objects LEi+1 and REi as the objects obtained from the distinguished triangles

LEi+1 −→ Hom
•
(Ei, Ei+1)⊗ Ei −→ Ei+1,

Ei −→ Hom
•
(Ei, Ei+1)

∗ ⊗ Ei+1 −→ REi.
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The object LEi+1 (resp. REi) is called by left (right) mutation of Ei+1 (resp. Ei) in the collection σ. It can be

checked that the objects LEi+1 and REi are exceptional and, moreover, the two collections

Liσ = (E0, . . . , Ei−1, LEi+1, Ei, Ei+2, . . . , En)

Riσ = (E0, . . . , Ei−1, Ei+1, REi, Ei+2, . . . , En)

are exceptional as well. These collections are called left and right mutations of the collection σ in the pair

(Ei, Ei+1). Consider Ri and Li as operations on the set of all exceptional collections in the category D. It is

easy to see that they are mutually inverse, i.e. RiLi = 1. Moreover, Li (resp. Ri) satisfy the Artin braid group

relations:

LiLi+1Li = Li+1LiLi+1, RiRi+1Ri = Ri+1RiRi+1

(see [10, 19]).

Denote by L(k)Ei with k ≤ i the result of multiple left mutations of the object Ei in the collection σ.

Analogously for right mutations.

Definition 2.14. The exceptional collection (L(n)En, L
(n−1)En−1, . . . E0) is called the left dual collection for

the collection (E0, . . . , En). Analogously, the right dual collection is defined as (En, REn−1, . . . , R
(n)E0).

Example 2.15. For example, let us consider the full exceptional collection (P0, . . . , Pl−1) in the category

Db(mod−Bθ), consisting of the projective Bθ-modules Pi. It can be shown (e.g. [10], Lemma 5.6) that the

irreducible modules Qi, 0 ≤ i < l can be expressed as

Qi
∼= L(i)Pi[i].

Thus, the left dual for the exceptional collection (P0, . . . , Pl−1) coincides with the collection (Ql−1[1− l], . . . , Q0).

2.5. A description of the derived categories of coherent sheaves on Pθ(a). The natural isomorphisms

Hom(Pi, Pj) ∼= Hom(O(i),O(j)), which are direct consequences of the construction of the algebra Bθ, allow us to

construct a functor F̄ : Hb(P) −→ Db(coh(Pθ)), where P is the full subcategory of the category of right modules

mod–Bθ consisting of finite direct sums of the projective modules Pi, i = 0, . . . , l − 1. The functor F̄ sends Pi

to O(i) and any bounded complex of projective modules to the corresponding complex of O(i), i = 0, . . . , l− 1.

It follows from Remark 2.9 that the functor F̄ induces a functor

F : Db(mod–Bθ) −→ Db(coh(Pθ)).

Theorem 2.16. The functor F : Db(mod–Bθ) −→ Db(coh(Pθ)) is an equivalence of the derived categories.

Since the exceptional collection (O, . . . ,O(l − 1)) generates the category Db(coh(Pθ)) it is sufficient to check

that the functor F is fully faithful. We know that for any 0 ≤ i, j ≤ l − 1 and any k there are isomorphisms

Hom(Pi, Pj [k])
∼−→ Hom(FPi, FPj [k]) = Hom(O(i),O(j)[k]).

Since Pi, i = 0, . . . , l − 1 generate Db(mod–Bθ), the proof of the theorem is a consequence of the following

lemma.

Lemma 2.17. Let A be abelian category and D be a triangulated category. Let F : Db(A) −→ D be an exact

functor and let {Ei}i∈I be a set of objects of Db(A) which generates Db(A) (i.e. the minimal full triangulated

subcategory of Db(A) containing all Ei coincides with Db(A)). Assume that the maps

Hom(Ei, Ej [k]) −→ Hom(FEi, FEj [k])

are isomorphisms for all i, j ∈ I and any k ∈ Z. Then the functor F is fully faithful.
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Proof. This lemma is known and results from dévissage (e.g. [21],10.10, [25]4.2). We first consider the full

subcategory C ∈ Db(A) which consists of all objects X such that the maps

Hom(X,Ei[k])
∼−→ Hom(FX,FEi[k])

are isomorphisms for all i ∈ I and all k ∈ Z. The category C is a triangulated subcategory, because it is closed

with respect to the translation functor and, for any distinguished triangle

X −→ Y −→ Z −→ X[1],

if X and Y belong to C, then Z belongs too. The last statement is a consequence of the five lemma, i.e., since

the morphisms f1, f2, f4, f5 in the diagram

Hom(Y [1], Ei) −−−−→ Hom(X[1], Ei) −−−−→ Hom(Z,Ei) −−−−→
f1

y f2

y
yf3

Hom(FY [1], FEi) −−−−→ Hom(FX[1], FEi) −−−−→ Hom(FZ,FEi) −−−−→

−−−−→ Hom(Y,Ei) −−−−→ Hom(X,Ei)yf4
yf5

−−−−→ Hom(FY, FEi) −−−−→ Hom(FX,FEi)

are isomorphisms, the morphism f3 is an isomorphism too. The subcategory C contains the objects Ei and,

hence, coincides with Db(A). Now consider the full subcategory B ⊂ Db(A) consisting of all objects X such

that the map

Hom(Y,X[k])
∼−→ Hom(FY, FX[k])

is an isomorphism for every object Y ∈ Db(A) and all k ∈ Z. By the same argument as above the subcategory

B is triangulated and contains all Ei. Therefore, it coincides with D
b(A). This proves the lemma and completes

the proof of the Theorem. ¤

There is also a right adjoint to F, namely a functor G : Db(coh(Pθ)) −→ Db(mod−Bθ). To construct it we

have to consider the functor

Hom(Tθ,−) : Qcoh(Pθ) −→ Mod−Bθ

where Mod−Bθ is the category of all right modules over Bθ. Since Qcoh(Pθ) has enough injectives and has

finite global dimension there is a right derived functor

RHom(Tθ,−) : Db(Qcoh(Pθ)) −→ Db(Mod−Bθ).

Db(coh(Pθ)) is equivalent to the full subcategory Db
coh(Qcoh(Pθ)) of Db(Qcoh(Pθ)) whose objects are complexes

with cohomologies in coh(Pθ). Moreover, the functor RHom(Tθ,−) sends an object of Db
coh(Qcoh(Pθ)) to an

object of the subcategory Db
mod(Mod−Bθ), which is also equivalent to Db(mod−Bθ). This gives us a functor

G = RHom(Tθ,−) : Db(coh(Pθ)) −→ Db(mod−Bθ).

The functor G is right adjoint to F, and it is an equivalence of categories as well.

In the end of this paragraph we describe an equivalence relation θ ∼ θ′ on the space of all matrices θ with

θij ∈ k∗ for all i, j under which the noncommutative weighted projective spaces Pθ and Pθ′ have equivalent

abelian categories of coherent sheaves. It was mentioned above that the graded algebras Sθ depend only on

the matrix θan defined by the rule (2.3). However, it can also happen that two different algebras Sθ and Sθ′

produce isomorphic algebras Bθ and Bθ′ .



MIRROR SYMMETRY FOR WEIGHTED PROJECTIVE PLANES 15

Proposition 2.18. Let (m0, . . . ,mn) ∈ (k∗)(n+1) be any vector with non-zero entries. Suppose that two matrices

θ, θ′ ∈ M(n+ 1,k∗) are related by the formula

(2.7) θ′ij = θij ·maj
i .

Then the algebras Bθ′ and Bθ are isomorphic.

Proof. Consider the category Bθ′ and its autoequivalence τ which acts by identity on the objects and acts on

the spaces Hom(vi, vj) as the multiplication by (mi)
(j−i). There is a natural basis of the spaces Hom(vi, vj)

which is induced by the monomial basis xi0 · · ·xik , 0 ≤ i0 ≤ · · · ≤ ik ≤ n of Sθ′ . The transformation of this

basis under the equivalence τ gives us a new basis in which the category Bθ′ coincides with the category Bθ

equipped with its natural basis coming from the monomial basis of Sθ. The equivalence of the categories Bθ′

and Bθ implies an isomorphism of the algebras Bθ′ and Bθ. ¤

If now the algebras Bθ′ and Bθ are isomorphic, then the composition of the functors

Db(coh(Pθ′))
Gθ′−→ Db(mod−Bθ′) ∼= Db(mod−Bθ) Fθ−→ Db(coh(Pθ))

is an equivalence of derived categories. This equivalence evidently takes a sheaf O(i), 0 ≤ i ≤ l − 1 on Pθ′ to
the sheaf O(i) on Pθ. Using the resolution (2.6) it can be easily checked that this functor takes O(i) to O(i) for
all i ∈ Z. Now, it follows from the ampleness condition on {O(i)} and Corollary 2.8 that the functor sends the

subcategory coh(Pθ′) to coh(Pθ) and induces an equivalence coh(Pθ′) ∼= coh(Pθ). We just proved:

Corollary 2.19. If the matrices θ′ and θ are connected by the relation (2.7) then the noncommutative weighted

projective spaces Pθ′(a) and Pθ(a) have equivalent abelian categories of coherent sheaves coh(Pθ′) and coh(Pθ).

In the case n = 1, it follows immediately that for any θ, θ′ ∈ M(2,k∗) the categories coh(Pθ(a0, a1)) and

coh(Pθ′(a0, a1)) are equivalent.

Next consider the case n = 2. For any matrix θ ∈M(3,k∗) denote the expression

(θan01 )
a2(θan12 )

a0(θan20 )
a1 = (θ01)

a2(θ12)
a0(θ20)

a1(θ10)
−a2(θ21)

−a0(θ02)
−a1

by q(θ). Now, the result of Proposition 2.18 can be written in the following form.

Corollary 2.20. Let n = 2 and let θ′ and θ be two matrices from M(3,k∗). If q(θ′) = q(θ) then the abelian

categories coh(Pθ′(a0, a1, a2)) and coh(Pθ(a0, a1, a2)) are equivalent.

2.6. DG algebras and Koszul duality. The aim of this section is to give another description of the derived

categoryDb(coh(Pθ)). It was shown above that this category is equivalent to the derived categoryDb(mod−Bθ).
We introduce a finite dimensional differential Z-graded algebra (DG algebra) C•

θ and prove that the category

Db(coh(Pθ)) is equivalent to the derived category of C•

θ .

This new description of the derived category in terms of the DG-algebra C•

θ naturally yields an exceptional

collection (Corollary 2.27), which is essentially the (left) dual of the collection described in Theorem 2.12, cf.

the discussion at the end of §2.4.
We recall here that a DG algebra over k is a graded associative k–algebra

R =
⊕

p∈Z

Rp

with a differential d of degree +1 such that

d(rs) = (dr)s+ (−1)pr(ds)

for all r ∈ Rp, s ∈ R. We will suppose that R is noetherian as a graded algebra.
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A right DG module over a DG algebra is a graded right R–module M =
⊕

p∈Z M
p with a differential ∇ of

degree 1 such that

∇(mr) = (∇m)r + (−1)pmdr
for all m ∈Mp and r ∈ R.

A morphism of DG R-modules f :M −→ N is called null-homotopic if f = dNh+ hdM , where h :M −→ N

is a morphism of the underlying graded R-modules which is homogeneous of degree −1. The homotopy category

Hb(R) is defined as a category which has all finitely generated DG R-modules as objects, and whose morphisms

are the equivalence classes f of morphisms of DG R-modules modulo null-homotopic morphisms. A morphism

of DG R-modules s : M → N is called a quasi-isomorphism if the induced morphism H∗s : H∗(M) → H∗(N)

is an isomorphism of graded vector spaces. Now, by definition, the derived category Db(R) is the localization

Db(R) := Hb(R)
[
Σ−1

]
,

where Σ is the class of all quasi-isomorphisms. It can be checked that there are canonical isomorphisms

HomDb(R)(R,M)
∼−→ HomHb(R)(R,M)

∼−→ H0M

for each DG R-module M.

Any ordinary k-algebra A can be considered as the DG algebra A• with A0 = A and Ap = 0 for all p 6= 0. In

this case the derived category of the DG algebra Db(A•) identifies with the bounded derived category of finitely

generated right A-modules, i.e. Db(A•) ∼= Db(mod−A). For a detailed exposition of the facts about derived

categories of DG algebras, see [25, 26].

Now denote by Bθs the algebra Bθ/ rad(Bθ) and consider it as a right Bθ-module, isomorphic to the sum
l−1
⊕
i=0

Qi of all irreducibles. Introduce the finite dimensional DG algebra

Ext
•

Bθ
(Bθs, Bθs) = ⊕

p∈Z
ExtpBθ

(Bθs, Bθs)

with the natural composition law and trivial differential. In what follows we give a precise description of this

DG algebra and prove the existence of an equivalence

Db(coh(Pθ)) ∼= Db(Ext
•

Bθ
(Bθs, Bθs)),

which gives the promised description of the category Db(coh(Pθ)).
Let us introduce a graded DG algebra Λ• = Λ•(a0, . . . , an). As a DG algebra it is the skew-symmetric algebra

with trivial differential which is generated by skew-commutative elements yi, i = 0, . . . , l − 1 of degree 1, i.e.

Λ
•
=

n+1⊕

p=0

Λp,

where yi ∈ Λ1 with the relations yiyj = −yjyi for all 0 ≤ i, j ≤ n.
The additional grading on the DG algebra Λ•(a0, . . . , an) is defined by putting yi ∈ Λ•

−ai . Thus Λ
•(a0, . . . , an)

is just a bigraded skew-symmetric algebra

Λ
•
(a0, . . . , an) =

⊕

p,i∈Z

Λpi

with generators yi ∈ Λ1−ai . For any (n+1)×(n+1)-matrix θ we also can define a graded DG algebra Λ•

θ(a0, . . . , an)

as the DG algebra with trivial differential and generated by elements yi ∈ (Λθ)
1
−ai , i = 0, . . . , n with the relations

θijyiyj + θjiyjyi = 0

for all 0 ≤ i, j ≤ n.
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Consider the following complex Com
•
of right Sθ-modules

(2.8) Com
•
:= 0→ Sθ(−

n∑

i=0

ai)→
⊕

i0<...<in−1

Sθ(−
n−1∑

j=0

aij )→ · · ·

· · · →
⊕

i0<i1

Sθ(−ai0 − ai1)→
n⊕

i=0

Sθ(−ai)→ Sθ → 0,

in which the differentials are defined componentwise as follows: for any set I = {i0, . . . ik} the differential sends

the generator of Sθ(−
∑
i∈I

ai) to the sum of the elements

(−1)s
(
∏

i∈I

θiis

)
xis

of Sθ
(
− ∑
i∈(I\is)

ai
)
, for 0 ≤ s ≤ k. With this we see that the complex Com

•
is a free resolution of the right

Sθ-module kSθ .

Now we define a structure of left DG module over the DG algebra Λ•

θ on the complex Com
•
, such that the

element yj takes the generator of Sθ(−
∑
i∈I

ai) to the generator of Sθ(−
∑

i∈(I\is)

ai) with coefficient

(−1)s
∏

i∈I

θisi

if j = is ∈ I = {i0, . . . , ik}, and takes it to zero if j 6∈ I. It can be checked that this action is well defined and

makes the complex Com
•
a DG Λ•

θ-Sθ-bimodule.

Remark 2.21. It is not difficult to see that the complex Com
•
as a graded Λ•

θ-Sθ-bimodule (i.e. without

differential) is isomorphic to (Λ•

θ)
∗⊗

k
Sθ, where (Λ•

θ)
∗ is Homk(Λ

•

θ,k).

Definition 2.22. Define a DG category Cθ (actually graded category, because all differentials are trivial) as a

DG category with l objects, say w0, . . . , wl−1, and the spaces of morphisms between which are the complexes

Hom
•
(wj , wi) ∼= (Λ

•

θ)i−j

with the natural composition law induced by that of the DG algebra Λ•

θ.

It follows from the definition of the DG algebra Λ•

θ that

Hom
•
(wj , wi) = 0 when j < i.

Definition 2.23. Define the DG algebra C•

θ as the DG algebra of the DG category Cθ, i.e.

C
•

θ :=
⊕

0≤i,j≤l−1

Hom
•
(wj , wi).

The quotient of this DG algebra by its radical is isomorphic to k⊕l. In particular the DG algebra C•

θ , similarly

to the algebra Bθ, has l irreducible DG modules in degree 0. Moreover, as a right DG C•

θ -module the algebra

C•

θ is a direct sum

C
•

θ =

l−1⊕

i=0

Hi, where Hi =
⊕

0≤j≤l−1

Hom
•
(wj , wi),

and Hi are homotopically projective right DG C•

θ -modules.

Let us construct a DG C•

θ -Bθ-bimodule X•, obtained from the DG Λ•

θ-Sθ-bimodule Com
•
by the formula

X
•
=

⊕

0≤i,j≤l−1

X
•
(i, j), with X

•
(i, j) ∼= Com

•

j−i
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where Com
•

j−i is the degree (j − i) component of the graded complex Com
•
. In particular, X•(i, j) = 0 when

i > j and X•(i, i) ∼= k for all i. The structure of DG C•

θ -Bθ-bimodule on X• comes from the structure of

DG Λ•

θ-Sθ-bimodule on Com
•
. The bimodule X• is quasi-isomorphic to k⊕l, and it is quasi-isomorphic to

Bθ/ rad(Bθ) as a right Bθ-module and to C•

θ/ rad(C
•

θ) as a left DG C•

θ -module. This fact allows us to say that

the DG algebra C•

θ is the Koszul dual to the algebra Bθ.

Remark 2.24. It follows from Remark 2.21 that X• as a graded C•

θ -Bθ-bimodule (i.e. without differential) is

isomorphic to
l−1⊕

i=0

H∗i ⊗ Pi,

where H∗i are the left DG C•

θ -modules Homk(Hi,k). In other words, as a graded C•

θ -Bθ-bimodule X• is isomor-

phic to C•

θ
∗ ⊗k⊕l Bθ.

For any right DG C•

θ -module N , the tensor product N ⊗kX
• is naturally a complex of right Bθ-modules, in

which the module structure is given by the action of Bθ on X•, and the grading and differential are given by

(N ⊗k X
•)k =

⊕
p+q=k

Np ⊗k X
q, d(n⊗ x) = (dn)⊗ x+ (−1)pn⊗ dx

for all n ∈ Np, x ∈ X•. The k-submodule generated by all differences nc ⊗ x − m ⊗ cx is closed under the

differential and under multiplication by any element of Bθ. So the quotient by this submodule, which we denote

by N ⊗C•
θ
X•, is a well-defined complex of right Bθ-modules.

For any complex M of right Bθ-modules we define a right DG C•

θ -module

HomBθ
(X•,M)k =

∏
p−q=k

HomBθ
(Xq,Mp), (df)(x) = d(f(x))− (−1)nf(dx).

In this way we get a pair of adjoint functors (−) ⊗C•
θ
X• and HomBθ

(X•,−) between homotopy categories,

which induce a pair of adjoint functors on the level of derived categories as well:

L
⊗C•

θ
X

•
: Db(C

•

θ) −→ Db(mod -Bθ), RHomBθ
(X

•
,−) : Db(mod -Bθ) −→ Db(C

•

θ).

Moreover, since X• is a projective finitely generated right Bθ-module and a flat left C•

θ -module, both functors

(−)⊗C•
θ
X• and HomBθ

(X•,−) between homotopy categories preserve acyclicity. Hence, the derived functors

in this case are defined by the same formulas. For more information about derived functors see e.g. [25].

Theorem 2.25. The functors
L
⊗C•

θ
X• and RHomBθ

(X•,−) are equivalences of triangulated categories.

Proof. It is evident that the first functor
L
⊗C•

θ
X• takes C•

θ as a right DG C•

θ -module to X• as a right Bθ-

module which is isomorphic to Bθs =
l−1
⊕
i=0

Qi in the derived category Db(mod -Bθ). On the other hand, it follows

from Remark 2.24 and the equalities HomBθ
(Pi, Qj) = δijk that the latter functor, RHomBθ

(X•,−), takes the
module Bθs =

l−1
⊕
i=0

Qi to the free DG module C•

θ =
⊕l−1

i=0Hi and takes Qi to Hi for any 0 ≤ i ≤ l− 1. Thus, the

composition functor RHomBθ
(X•,−)

L
⊗C•

θ
X• sends Bs to itself and it also sends all direct summands Qi to

Qi. The adjunction maps

RHomBθ
(X

•
, Qi)

L
⊗C•

θ
X

• −→ Qi

cannot be trivial, hence they are isomorphisms for all i. Therefore, we obtain isomorphisms

HomBθ
(Qi, Qj [k])

∼−→ HomC•
θ
(RHomBθ

(X
•
, Qi),RHomBθ

(X
•
, Qj)[k]) ∼= Hom(Hi, Hj [k])

for any 0 ≤ i, j ≤ l − 1 and all k ∈ Z.
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Since Qi, i = 0, . . . , l − 1 generate the derived category Db(mod -Bθ), Lemma 2.17 implies that the functor

RHomBθ
(X

•
,−) : Db(mod -Bθ) −→ Db(C

•

θ)

is fully faithful.

Consider the triangulated subcategory D of Db(C•

θ) generated by Hi, i = 0, . . . , l − 1. By Remark 2.24

X• as a graded C•

θ -Bθ-bimodule is isomorphic to
⊕l−1

i=0H
∗
i ⊗ Pi, and hence, the dual to X• over k gives a

resolution of C•

θ/ rad(C
•

θ) in terms of Hi. Therefore, the subcategory D contains all irreducible DG modules

and coincides with the whole Db(C•

θ). Thus, Hi, i = 0, . . . , l− 1 generate the category Db(C•

θ), and the functor

RHomBθ
(X•,−) is an equivalence of the derived categories. ¤

Corollary 2.26. There is an isomorphism of DG algebras

C
•

θ
∼=

⊕

0≤i,j≤l−1

Ext
•
(Qi, Qj).

The assertion of the Corollary is clear now, because the functor
L
⊗, which is an equivalence, sends C•

θ to

Bθs =
l−1
⊕
i=0

Qi.

Corollary 2.27. The derived category of coherent sheaves Db(coh(Pθ)) on the noncommutative weighted space

Pθ is equivalent to the derived category Db(C•

θ).

2.7. Hirzebruch surfaces Fn. The surfaces Fn are minimal rational surfaces defined as the projectivizations

Proj (O ⊕ O(−n)) of the vector bundles O ⊕ O(−n) over P1. The surface Fn has a (−n)-section that will be

denoted by s. There is a simple connection between Fn and the weighted projective plane P(1, 1, n), namely the

latter can be obtained from Fn by contracting the (−n)section s. In this way Fn is a resolution of the singularity

of P(1, 1, n). Thus, we have two different resolutions of the singularity of P(1, 1, n):

Fn

##
HHHHHHHHH P(1, 1, n)

xxrrrrrrrrrr

P(1, 1, n)

For this reason the derived categories of coherent sheaves on Fn and on P(1, 1, n) are closely related to each

other. We will show that for n ≥ 2 there is a fully faithful functor

MKn : Db(coh(Fn)) −→ Db(coh(P(1, 1, n)))

and will give its description.

Denote by f the class of the fiber of Fn in the Picard group. Since Fn is a P1-bundle over P1 the derived

category of coherent sheaves on Fn has an exceptional collection of length 4 (see [32]). More precisely, we have

Proposition 2.28. The collection σ = (O,O(f),O(s+ nf),O(s+ (n+ 1)f)) is a full strong exceptional col-

lection on Fn. The derived category Db(coh(Fn)) is equivalent to the derived category Db(mod -F (n)), where

F (n) is the algebra of the exceptional collection σ.

Denote by U the two dimensional vector space H0(Fn,O(f)). From the exact sequence

0 −→ O −→ O(s+ nf) −→ Os −→ 0

we find that H0(Fn,O(s+ nf)) is the direct sum of the space SnU and a one-dimensional space. Analogously,

we can check that H0(Fn,O(s+ (n+ 1)f)) is isomorphic to SnU ⊕ U.
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On the other hand, we know that the weighted projective plane P(1, 1, n) has an exceptional collection

(O,O(1), . . . ,O(n),O(n+ 1)) .

Denote the algebra of this exceptional collection by B(1, 1, n). It follows from Proposition 2.7 that the space

H0(P(1, 1, n),O(1)) is isomorphic to U, H0(P(1, 1, n),O(n)) is isomorphic to the direct sum of SnU and a

one-dimensional space, and H0(P(1, 1, n),O(n + 1)) is isomorphic to SnU ⊕ U. This implies that the algebra

of the exceptional collection (O,O(f),O(s+ nf),O(s+ (n+ 1)f)) on Fn is isomorphic to the algebra of the

exceptional collection (O,O(1),O(n),O(n+ 1)) on P(1, 1, n).
Thus, the algebra of endomorphisms of the projective B(1, 1, n)-module

M = P0 ⊕ P1 ⊕ Pn ⊕ Pn+1
coincides with F (n), which makes M a F (n)-B(1, 1, n)-bimodule. The natural functor

(−)
L
⊗F (n) M : Db(mod -F (n)) −→ Db(mod -B(1, 1, n))

takes the free module F (n) to M, and there are isomorphisms

HomF (n)(F (n), F (n)[k])
∼−→ HomB(1,1,n)(M,M [k]).

Since the direct summands of F (n) generate the derived category Db(mod -F (n)), Lemma 2.17 guarantees that

the functor (−)
L
⊗F (n) M is fully faithful. Using the descriptions of the derived categories of coherent sheaves

on Fn and P(1, 1, n) in terms of the exceptional collections, we obtain the following theorem.

Theorem 2.29. The functor

MKn : Db(coh(Fn)) −→ Db(coh(P(1, 1, n)))

induced by (−)
L
⊗F (n) M is fully faithful.

3. Categories of Lagrangian vanishing cycles

3.1. The category of vanishing cycles of an affine Lefschetz fibration. We begin this section by briefly

reviewing Seidel’s construction of a Fukaya-type A∞-category associated to a symplectic Lefschetz fibration

[34, 35, 36], following a proposal of Kontsevich [28]. For an account of the underlying physics, the reader is

referred to the work of Hori et al [22].

Let (X,ω) be an open symplectic manifold, and let f : X → C be a symplectic Lefschetz fibration, i.e. a

C∞ complex-valued function with isolated non-degenerate critical points p1, . . . , pr near which f is given in

local coordinates by f(z1, . . . , zn) = f(pi) + z21 + · · · + z2n, and whose fibers are symplectic submanifolds of X.

Fix a regular value λ0 of f , and consider an arc γ ⊂ C joining λ0 to a critical value λi = f(pi). Using the

horizontal distribution given by the symplectic orthogonal to the fibers of f , we can transport the vanishing

cycle at pi along the arc γ to obtain a Lagrangian disc Dγ ⊂ X fibered above γ, whose boundary is an embedded

Lagrangian sphere Lγ in the fiber Σ0 = f−1(λ0). When the fibers of f are non-compact, parallel transport

along the horizontal distribution is not always well-defined; we will always assume that the symplectic form ω

satisfies the conditions required to make the construction valid. The Lagrangian disc Dγ is called the Lefschetz

thimble over γ, and its boundary Lγ is the vanishing cycle associated to the critical point pi and to the arc γ.

Let γ1, . . . , γr be a collection of arcs in C joining the reference point λ0 to the various critical values of f ,

intersecting each other only at λ0, and ordered in the clockwise direction around p0. Each arc γi gives rise to

a Lefschetz thimble Di ⊂ X, whose boundary is a Lagrangian sphere Li ⊂ Σ0. After a small perturbation we

can always assume that these spheres intersect each other transversely inside Σ0.



MIRROR SYMMETRY FOR WEIGHTED PROJECTIVE PLANES 21

Definition 3.1 (Seidel). The directed category of vanishing cycles Lagvc(f, {γi}) is an A∞-category (over a

coefficient ring R) with r objects L1, . . . , Lr corresponding to the vanishing cycles (or more accurately to the

thimbles); the morphisms between the objects are given by

Hom(Li, Lj) =





CF ∗(Li, Lj ;R) = R|Li∩Lj | if i < j

R · id if i = j

0 if i > j;

and the differential m1, composition m2 and higher order products mk are defined in terms of Lagrangian Floer

homology inside Σ0. More precisely,

mk : Hom(Li0 , Li1)⊗ · · · ⊗Hom(Lik−1
, Lik)→ Hom(Li0 , Lik)[2− k]

is trivial when the inequality i0 < i1 < · · · < ik fails to hold (i.e. it is always zero in this case, except for m2

where composition with an identity morphism is given by the obvious formula). When i0 < · · · < ik, mk is

defined by fixing a generic ω-compatible almost-complex structure on Σ0 and counting pseudo-holomorphic maps

from a disc with k+1 cyclically ordered marked points on its boundary to Σ0, mapping the marked points to the

given intersection points between vanishing cycles, and the portions of boundary between them to Li0 , . . . , Lik

respectively.

While the general definition of Lagrangian Floer homology is a very delicate task [16], we will only consider

cases where most of the technical considerations can be skipped. For example, Seidel considers the case where

the symplectic form ω is exact (ω = dθ for some 1-form θ) and the Li are exact Lagrangian submanifolds in

Σ0 (i.e. θ|Li
= dgi is also exact). Here, we assume instead that the restricted symplectic form ω|Σ0

is exact

and that the homotopy groups π2(Σ0) and π2(Σ0, Li) are trivial. The first condition prevents the bubbling of

pseudo-holomorphic spheres, while the second one prevents the bubbling of pseudo-holomorphic discs in the

definition of Lagrangian Floer homology. Therefore, the moduli spaces of pseudo-holomorphic maps involved in

the definition of Lagvc(f, {γi}) have well-defined fundamental classes.

Another assumption that we will make concerns the Maslov class, which we will assume to vanish over Li.

In fact, we will restrict ourselves to the case where X and Σ0 are affine Calabi-Yau manifolds, and the spheres

Li can be lifted to graded Lagrangian submanifolds of Σ0, e.g. by fixing a holomorphic volume form on Σ0 and

choosing a real lift of the phase exp(iφ) = Ω|Li
/volLi

: Li → S1. This makes it possible to define a Z-grading
(by Maslov index) on the Floer complexes CF ∗(Li, Lj ;R), as will be discussed later (see also [34]).

For simplicity, Seidel uses R = Z/2 as coefficient ring in his definition; however the moduli spaces considered

below are orientable, so it is possible to assign a sign ±1 to each pseudo-holomorphic curve and hence define

Floer homology over Z. We will further extend the coefficient ring to R = C, and count the contribution of

each pseudo-holomorphic disc u : (D2, ∂D2) → (Σ0,
⋃
Li) in the moduli space with a coefficient of the form

± exp(−
∫
D2 u

∗ω). Weighting by area is irrelevant in the case of exact Lagrangian vanishing cycles considered

by Seidel, where it does not affect at all the structure of the category: indeed, the symplectic areas can then

be expressed in terms of the primitives gi of θ over Li, and can be eliminated from the description simply by a

rescaling of the chosen bases of the Floer complexes (considering the basis {exp (gi(p)− gj(p)) p, p ∈ Li ∩ Lj}
of CF ∗(Li, Lj)). On the contrary, in the non-exact case it is important to incorporate this weighting by area

into the definition.

Hence, given two intersection points p ∈ Li ∩ Lj , q ∈ Lj ∩ Lk (i < j < k), we have by definition

m2(p, q) =
∑

r∈Li∩Lk

deg r=deg p+deg q

(
∑

[u]∈M(p,q,r)

± exp(−
∫

D2

u∗ω)

)
r
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whereM(p, q, r) is the moduli space of pseudo-holomorphic maps u from the unit disc to M (equipped with a

generic ω-compatible almost-complex structure) such that u(1) = p, u(j) = q, u(j2) = r (where j = exp( 2iπ3 )),

and mapping the portions of unit circle [1, j], [j, j2], [j2, 1] to Li, Lj and Lk respectively. The other products are

defined similarly.

It is worth mentioning that this definition of Floer homology over complex numbers is in fact essentially

equivalent to the use of coefficients in a Novikov ring, since in both cases the main goal is to keep track of

(relative) homology classes.

Although the category Lagvc(f, {γi}) depends on the chosen ordered collection of arcs {γi}, Seidel has

obtained the following result [34]:

Theorem 3.2 (Seidel). If the ordered collection {γi} is replaced by another one {γ ′i}, then the categories

Lagvc(f, {γi}) and Lagvc(f, {γ′i}) differ by a sequence of mutations.

Hence, the category naturally associated to the Lefschetz fibration f is not the finite directed category defined

above, but rather a (bounded) derived category, obtained from Lagvc(f, {γi}) by considering twisted complexes

of formal direct sums of Lagrangian vanishing cycles, and adding idempotent splittings and formal inverses

of quasi-isomorphisms. It is a classical result that, if two categories differ by mutations, then their derived

categories are equivalent; hence the derived category D(Lagvc(f)) only depends on the Lefschetz fibration f

rather than on the choice of an ordered system of arcs [34].

We finish this overview with a couple of remarks. In “usual” Fukaya categories, objects are pairs consisting

of a compact Lagrangian submanifold and a flat connection on some complex vector bundle defined over it. In

the case of the category associated to a Lefschetz fibration, the objects are vanishing cycles, or perhaps more

accurately, the Lefschetz thimbles bounded by the vanishing cycles. Since the thimbles are contractible, all

flat vector bundles over them are trivial, which eliminates the need to consider Floer homology with twisted

coefficients. This ceases to be true in presence of a non-trivial B-field, but even then the equivalence class of

the connection is entirely determined by the thimble. Another related issue is the choice of a spin structure on

the vanishing cycles in order to fix the orientation on the moduli spaces: in the one-dimensional case that will

be of interest to us, each vanishing cycle admits two distinct spin structures (H1(S1,Z/2) = Z/2). However we

must always consider the spin structure which extends to the thimble, i.e. the non-trivial one.

The reader is referred to Seidel’s papers [34, 35] for various examples – we will focus specifically on the

Landau-Ginzburg models mirror to weighted projective spaces and Hirzebruch surfaces.

3.2. Structure of the proof of Theorem 1.2. Derived categories of coherent sheaves on the weighted pro-

jective planes P2(a, b, c) and their noncommutative deformations P2θ(a, b, c) have been described in Chapter 2.

Hence, to prove Theorem 1.2, we need to find a similar description of the derived categories of Lagrangian

vanishing cycles on the mirror Landau-Ginzburg models.

Recall that the mirror to P2θ(a, b, c) is (X,W ), where X is the affine hypersurface {xaybzc = 1} ⊂ (C∗)3,
equipped with an exact (for the commutative case) or non-exact (for the noncommutative case) symplectic

form, and the superpotential W = x+ y + z.

By construction, categories of Lagrangian vanishing cycles for Lefschetz fibrations always admit full ex-

ceptional collections. Indeed, for any choice of arcs {γi} the objects Li of Lagvc(W, {γi}) form a generating

exceptional collection of the derived category. Hence, in view of Theorem 2.12 and Corollary 2.27, all we need

to do is exhibit a set of arcs {γi} for which Lagvc(W, {γi}) is equivalent to one of the categories Bθ or Cθ

introduced in §2 (it turns out that the latter choice is slightly easier to achieve).

Recall from Corollary 2.27 that Db(coh(P2θ(a, b, c))) is equivalent to the derived category of the DG-algebra

C•

θ associated to the finite DG-category Cθ which has l = a+b+c objects w0, . . . , wl−1, with morphisms between
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them given by the complexes

Hom
•
(wj , wi) ∼= (Λ

•

θ)i−j

with the natural composition law induced by that of the deformed exterior algebra Λ•

θ on three generators of

degrees −a,−b,−c, with relations of the form θijyiyj + θjiyjyi where θ ∈ M(3,C∗) (see §2.6). Moreover, by

Corollary 2.20, this category depends only on the quantity

q(θ) = (θ01)
c(θ12)

a(θ20)
b(θ10)

−c(θ21)
−a(θ02)

−b.

From a practical viewpoint, the cyclic group Z/(a + b + c) acts by diagonal multiplication on X, and the

superpotential W = x+y+z is equivariant with respect to this action. The (a+ b+ c) critical values of W form

a single orbit under this action (see §4.2). In order to exploit this symmetry, it is therefore natural to choose the

smooth fiber Σ0 =W−1(0) as our reference fiber, and an ordered system of arcs γi ⊂ C (i = 0, . . . , a+ b+ c−1)

consisting of straight line segments from the origin to the various critical values λi.

With this understood, Theorem 1.2 follows immediately from Corollary 2.27 and the following statement:

Theorem 3.3. Lagvc(W, {γi}) is a DG category, and it is equivalent to Cθ for any θ ∈ M(3,k∗) such that

q(θ) = exp(i[B+ iω] · [T ]), where [B+ iω] ∈ H2(X,C) is the complexified Kähler class, and [T ] is the generator

of H2(X,Z).

The proof of Theorem 3.3 consists of several steps, carried out in the various subsections of §4. First, as a

prerequisite to the determination of the vanishing cycles, one needs a convenient description of the reference

fiber Σ0. This is done by considering the projection to the first coordinate axis, πx : Σ0 → C∗, which makes Σ0

a (b+c)-fold covering of C∗ branched in (a+b+c) points (Lemma 4.1). With this understood, it becomes fairly

easy to identify the vanishing cycles associated to the arcs γj , at least in the special case where the symplectic

form is anti-invariant under complex conjugation (which implies its exactness). Indeed, this assumption implies

that the vanishing cycles Lj are Hamiltonian isotopic (and hence equivalent from the point of view of Floer

theory) to the double lifts via πx of certain arcs δj ⊂ C∗ (Lemma 4.2) which can be described explicitly (Figure

5).

With an explicit description of the vanishing cycles at hand, it becomes possible to understand the Floer

complexes CF ∗(Li, Lj), by studying the intersections between Li and Lj for all 0 ≤ i < j < a + b + c. Using

the projection to the first coordinate, these correspond to certain specific intersections between the arcs δi and

δj in C∗, as dictated by the combinatorics of the branched covering πx. Such a description is given by Lemma

4.3, from which it follows readily that CF ∗(Li, Lj) ' (Λ•

θ)i−j for all i, j.

The next step is to study the Floer differentials and products in Lagvc(W, {γi}) by counting pseudo-

holomorphic maps from (D2, ∂D2) to (Σ0,
⋃
Li). This is done by searching for immersed polygonal regions

in Σ0 with boundary contained in
⋃
Li, or equivalently, images of such regions under the projection πx (see

§4.4). In our case, it turns out that the only possible contributions come from triangular regions in Σ0; hence,

the Floer differential m1 and the higher compositions (mk)k≥3 are identically zero (Lemmas 4.3 and 4.4) for

purely topological reasons, while the Floer product m2 has a particularly simple structure (Lemma 4.5). In

particular, the A∞-category Lagvc(W, {γi}) is actually a DG category with trivial differential.

The grading in Lagvc(W, {γi}) is determined by the Maslov indices of intersection points. Since the Maslov

class vanishes, each Li can be lifted to a graded Lagrangian submanifold of Σ0 by choosing a real lift of its phase

function (see §4.5). The degree of a given intersection point p ∈ Li ∩ Lj is then determined by the difference

between the phases of Li and Lj at p. Although the determination of phases is the most technical part of

the argument, it actually presents little conceptual difficulty, and after some calculations one readily checks

that the grading of morphisms in Lagvc(W, {γi}) is the expected one. Namely, the “generating” morphisms
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corresponding to the generators of the deformed exterior algebra Λ•

θ have degree 1, and their pairwise products

have degree 2 (cf. Lemma 4.7).

The argument is then completed by determining more precisely the structure coefficients for the Floer product

m2, which depend on the symplectic areas of the various pseudo-holomorphic discs and on the choice of consis-

tent orientations of the moduli spaces (see §4.6). In the case where the symplectic form is anti-invariant under

complex conjugation, the argument is greatly simplified by symmetry considerations, and the Floer products

obey the anticommutation rules of an (undeformed) exterior algebra (Lemma 4.8) – recall that complex conjuga-

tion anti-invariance implies exactness of the symplectic form. In the non-exact case or in presence of a non-zero

B-field, there is no simple method for determining the symplectic areas of the various pseudo-holomorphic discs

involved in the definition of m2. However the deformation of the category Lagvc(W, {γi}) is governed by a

single parameter (analogous to the quantity q(θ) introduced in Corollary 2.20), for which a simple topological

interpretation can be found, involving only the evaluation of [B + iω] on the generator of H2(X,Z) (Lemmas

4.9 and 4.10).

This provides the desired characterization of the category of Lagrangian vanishing cycles, and Theorem 3.3

becomes an easy corollary of Lemmas 4.3–4.10. The only subtle point is that the objects of the category Cθ

are numbered “backwards” (because the generators of Λ•

θ are assigned negative degrees), so the equivalence of

categories actually takes the objects L0, . . . , La+b+c−1 of Lagvc(W, {γi}) to the objects wa+b+c−1, . . . , w0 of Cθ.

3.3. Mirrors of weighted projective lines. As a warm-up example, we prove HMS for the weighted projec-

tive lines CP1(a, b), where a, b are mutually prime positive integers (see also [35] and [39]). The argument is an

extremely simplified version of that outlined in §3.2. Indeed, the mirror Landau-Ginzburg model is the curve

X = {xayb = 1} ⊂ (C∗)2 equipped with the superpotential W = x + y, whose generic fiber is just a finite set

of a+ b points; so most of the considerations that arise in the case of weighted projective planes are irrelevant

here (in particular the symplectic structure on X plays no role whatsoever, which is consistent with the fact

that the category coh(Pθ(a, b)) does not depend on θ).

More precisely, the fiber of W above a point λ ∈ C is

W−1(λ) = {(x, λ− x) ∈ (C∗)2, xa(λ− x)b = 1},

which consists of a+ b distinct points, unless P (x) = xa(λ− x)b − 1 has a double root. Since

P ′(x) =
(a
x
− b

λ− x
)
(P (x) + 1),

a root of P is a double root if and only if x = a
a+bλ; hence a double root exists if and only if P ( a

a+bλ) = 0, i.e.

(3.1) λa+b =
(a+ b)a+b

aabb
.

Let λ0 be the positive real root of this equation, and let λj = λ0ζ
−j where ζ = exp( 2πia+b ): then the critical

values of W are exactly λ0, . . . , λa+b−1. We choose Σ0 = W−1(0) as our reference fiber, and consider the

ordered system of arcs γ0, . . . , γa+b−1, where γj ⊂ C is a straight line segment joining the origin to λj . With

this understood, we have the following result, which implies that HMS holds for CP1(a, b):

Theorem 3.4. Lagvc(W, {γi}) is a DG category, equivalent to Cθ for any θ ∈ M(2,k∗).

In order to prove Theorem 3.4, we study the vanishing cycles of the superpotential W and their intersection

properties. To start with, observe that W is equivariant with respect to the diagonal action of the cyclic group

Z/(a + b). Therefore, the vanishing cycles Lj ⊂ Σ0 (which are Lagrangian 0-spheres, i.e. pairs of points) form

a single Z/(a+ b)-orbit, and Lj = ζ−j · L0.
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Figure 1. The fiber of W for λ ∈ R+ ((a, b) = (4, 3))

In order to determine L0, we study how the fiber W−1(λ) varies as λ increases along the positive real axis

(see Figure 1). For λ = 0, the fiber Σ0 consists of a + b points whose first coordinates are the roots of the

equation xa+b = (−1)b (these form a Z/(a+ b)-orbit, hence the points of Σ0 can naturally be identified with the

elements of Z/(a+ b) up to a translation). As λ increases towards λ0, two complex conjugate points of the fiber

converge towards each other, and become real points for λ > λ0. By considering the situation for λ → +∞,

where the solutions of xa(λ − x)b = 1 split into two groups, one consisting of a roots near the origin, and the

other consisting of b roots near λ, one easily checks that the vanishing cycle L0 consists of the two points of Σ0

with first coordinate x = exp(± iπ b
a+b ).

Hence, for a suitable identification of the fiber Σ0 with Z/(a + b), the vanishing cycle associated to the arc

γ0 = [0, λ0] is L0 = {0, b}. It follows immediately that Lj = ζ−j ·L0 = {−j, b− j} for all j = 0, 1, . . . , a+ b− 1.

Given 0 ≤ i < j < a + b, the vanishing cycles Li and Lj intersect if and only if the subsets {−i, b − i} and
{−j, b− j} of Z/(a+ b) have non-empty intersection, i.e. if j = i+ a or j = i+ b. Therefore, we have:

Lemma 3.5. The direct sum
⊕

i<j CF
∗(Li, Lj) is a free module of total rank (a+ b) over the coefficient ring,

generated by the intersection points

xi ∈ CF ∗(Li, Li+a) (0 ≤ i < b) and yi ∈ CF ∗(Li, Li+b) (0 ≤ i < a).

Because Σ0 is a discrete set, all pseudo-holomorphic curves in Σ0 must be constant maps. However, each

point of Σ0 occurs exactly once as an intersection between two vanishing cycles (there are no triple intersections),

which implies that the Floer differentials and products are trivial. Therefore, we have:

Lemma 3.6. The differentials and products mk, k ≥ 1 in the A∞-category Lagvc(W, {γi}) are all identically

zero, with the exception of the obvious ones m2(·, id) and m2(id, ·).

This of course greatly simplifies the argument, eliminating the need for many of the arguments required in

the case of higher-dimensional weighted projective spaces. At this point, our only remaining task is to determine

the Maslov indices of the various intersection points, by choosing graded Lagrangian lifts of the vanishing cycles.

A word of warning is in order here: because we are actually dealing with graded Lagrangian submanifolds in a

Calabi-Yau 0-fold, the argument is very specific (see §2 of [35] for a discussion of graded Lagrangian submanifolds

of 0-dimensional symplectic manifolds) and does not give a good intuition of the higher-dimensional case.

Lemma 3.7. There exists a natural choice of gradings for which deg(xi) = deg(yi) = 1.

Proof. Equip the curve X = {xayb = 1} ⊂ (C∗)2 with the complex structure induced by the standard one. The

holomorphic volume form d log x∧ d log y on (C∗)2 induces a (1, 0)-form Ω on X, characterized by the property

that it is the restriction to X of a 1-form (which we also call Ω) such that Ω ∧ d(xayb) = d log x ∧ d log y, i.e.,
using the fact that xayb = 1 along X,

Ω ∧
(a
x
dx+

b

y
dy
)
=
dx ∧ dy
xy

.
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Outside of the branch points of W , the 1-form Ω can be expressed as Θ dw, for some meromorphic function Θ

with simple poles at the branch points. The above equation becomes Θ( by − a
x ) =

1
xy , i.e. Θ = (bx − ay)−1 =

((a+ b)x− aw)−1. In particular, near Σ0 =W−1(0), we have argΘ = − arg x.

The complex-valued function Θ is (up to scaling by a positive real factor) the natural holomorphic volume

form induced by Ω on the 0-dimensional manifold Σ0 =W−1(0). Let L0 = {p−, p+}, where the x-coordinate of

p± is x± = exp(± iπb
a+b ). The phase of L0 is the function φL0

: L0 → R/πZ defined by

φL0
(p±) = argΘ(p±) = ∓

πb

a+ b
.

Note that an orientation on L0 determines a lift of φL0
to a R/2πZ-valued function; in order to define the

Maslov index, we need to view L0 as a graded Lagrangian submanifold, i.e. to choose a real lift φ̃L0
: L0 → R

of the phase function. Although there is a priori a Z2-space of such choices, one has to restrict oneself to only

those lifts which are compatible with a graded Lagrangian lift of the Lefschetz thimble D0 (which reduces the

space of choices to Z, as expected since vanishing cycles are only defined up to shifts). If we orient D0 from

p− towards p+, then the phase of D0 (the function φD0
: D0 → R/2πZ defined by φD0

(p) = argΩ(v) for any

p ∈ D0 and v ∈ TpD0 − {0} compatible with the orientation) has the property that

φD0
(p−) =

πb

a+ b
and φD0

(p+) =
πa

a+ b
.

Moreover, it is easy to check that φD0
(p) ∈ (0, π) for all p ∈ D0 (because Ω = 1

bd log x, and arg x is monotonically

increasing along D0). Hence, there exists a graded Lagrangian lift of D0 for which the phase function takes

values in (0, π), which means that we can choose a graded lift of L0 by setting

φ̃L0
(p−) =

πb

a+ b
and φ̃L0

(p+) =
πa

a+ b
.

Arguing similarly for the other vanishing cycles (or using the Z/(a + b)-equivariance), we can choose graded

lifts of Lj = {pj,−, pj,+} (where arg xj,± = 1
a+b (±πb− 2πj)) by setting

φ̃Lj
(pj,−) =

π(b+ 2j)

a+ b
and φ̃Lj

(pj,+) =
π(a+ 2j)

a+ b
.

Now, the degree of the morphism xj , corresponding to pj,+ = pj+a,− ∈ Lj ∩ Lj+a, is given by the difference of

phases:

deg xj =
1

π
(φ̃Lj+a

(pj+a,−)− φ̃Lj
(pj,+)) =

b+ 2(j + a)

a+ b
− a+ 2j

a+ b
= 1.

Similarly for yj :

deg yj =
1

π
(φ̃Lj+b

(pj+b,+)− φ̃Lj
(pj,−)) =

a+ 2(j + b)

a+ b
− b+ 2j

a+ b
= 1.

¤

Theorem 3.4 now follows immediately from Lemmas 3.5–3.7; as in the case of weighted projective planes,

the only difference between the DG-categories Lagvc(W, {γi}) and Cθ is that the objects of Cθ are numbered

“backwards”, so the equivalence of categories takes the objects L0, . . . , La+b−1 of Lagvc(W, {γi}) to the objects

wa+b−1, . . . , w0 of Cθ.

4. Mirrors of weighted projective planes

4.1. The mirror Landau-Ginzburg model and its fiber Σ0. The mirror to the weighted projective plane

CP2(a, b, c) is the affine hypersurface X = {xaybzc = 1} ⊂ (C∗)3, equipped with the superpotential W =

x+ y+ z, and a symplectic form ω that we leave unspecified for the moment. During most of the argument, we

will assume ω to be anti-invariant under complex conjugation (which implies exactness) and under the diagonal

action of the cyclic group Z/(a+ b+ c), but these assumptions will be weakened at the end. Of course, since X
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is non-compact, we also need to choose ω in such a way as to ensure that the Lefschetz thimbles and vanishing

cycles considered below are well-defined. It is easy to check that, among many other possibilities, a symplectic

form such as

ω = i
3∑

i,j=1

aij
dzi
zi
∧ dz̄j
z̄j

(where (aij) is a positive definite Hermitian matrix, with real coefficients if we require complex conjugation

anti-invariance) generates a horizontal distribution for which parallel transport is well-defined, because, with

respect to the induced Kähler metric, X is complete and the gradient vector of W has norm bounded from

below outside of a compact set.

Topologically, X is just a complex torus (C∗)2, at least if δ = gcd(a, b, c) = 1; otherwise X is disconnected,

and each of its δ components is a complex torus.

For each λ ∈ C, the fiber Σλ = W−1(λ) ⊂ X is an affine curve given by the equation xayb(λ− x− y)c = 1;

this curve is smooth unless λ is one of the a+ b+ c critical values of W . We will view Σλ as a branched covering

of C∗, by projecting to the x axis (this choice is arbitrary, and we will occasionally use the symmetry between

the variables x, y, z in the argument). For a generic value of x ∈ C∗, the polynomial xayb(λ − x − y)c − 1 of

degree b + c in the variable y admits b + c distinct simple roots; therefore, the projection πx : Σλ → C∗ is a

(b+ c)-fold covering. The branch points of πx are those values of x for which there is a double root, i.e. a value

of y such that P (y) = xayb(λ− x− y)c = 1 and P ′(y) = 0. Since

P ′(y)

P (y)
=
b

y
− c

λ− x− y ,

the condition P ′(y) = 0 implies that cy = b(λ − x − y), i.e. y = b
b+c (λ − x). Substituting into the equation of

Σλ, we obtain the equation

(4.1) xa(λ− x)b+c = (b+ c)b+c

bb cc

for the branch points of πx. Since this is a polynomial equation of degree a+ b+ c, for a generic value of λ there

are a+ b+ c distinct branch points, all of which are simple (i.e. isolated non-degenerate critical points of πx).

In the remainder of this section, we set λ = 0, and describe the curve Σ0 in detail, by computing the

monodromy of the (b+c)-fold branched covering πx : Σ0 → C∗ around the origin and around its a+b+c branch

points.

Lemma 4.1. The fiber of πx : Σ0 → C∗ can be identified with Z/(b+ c) in such a way that the monodromy of

πx around the origin in C∗ is given by q 7→ q − a, and the monodromies around the a+ b+ c branch points are

given by the transpositions (j, j + b), 0 ≤ j < a+ b+ c (see Figure 2).

To understand this statement, first observe that, when x = εeiθ is close to 0, the b+ c roots of the equation

(4.2) xayb(−x− y)c = 1

Σ0 -
(b + c) : 1

πx b
C∗

q
qq

qq

q
q µ´¶³6q 7→q−a

q©© f(0, b)¤
¤
f(1, b+1)

C
Cf(j, b+j)

Figure 2. The projection πx : Σ0 → C∗ (of degree b+ c, with a+ b+ c branch points)
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Figure 3. The roots of xayb(−x− y)c = 1 for x ∈ R+ ((a, b, c) = (1, 3, 5))

lie close to those of the equation

(−1)cyb+c = ε−ae−iaθ.

Hence, we can choose an identification of the fiber of πx above a small real positive value x = ε (or any other

εeiθ fixed in advance) with the cyclic group Z/(b + c) in a manner compatible with the cyclic ordering of the

points. Moreover, varying θ from 0 to 2π, we obtain that the monodromy of πx around the origin is given by

the translation q 7→ q− a in Z/(b+ c) (i.e., the permutation sending the root yq of xayb(−x− y)c = 1 to yq−a).

Next, consider a critical value of πx, i.e. a root x0 of (4.1) for λ = 0, and the radial half-line ` through x0,

i.e. the set of all x ∈ C∗ with argument equal to θ0 = arg x0. Moving x along ` starting from a point x∗ = εeiθ0

close to the origin, two of the b+c roots of (4.2) become equal to each other as x approaches x0; this determines

the monodromy of πx around x0, namely a transposition in the symmetric group Sb+c acting on a fiber of πx.

We claim that, identifying the fiber π−1x (x∗) with Z/(b+ c) as above, this transposition exchanges two elements

q0 and q0 + b. This can be seen as follows.

Assume for simplicity that b + c is even and that x0 is the positive real root of (4.1) for λ = 0; the general

case is handled similarly, inserting factors eiθ0 where needed. For x→ 0, as explained above, the b+ c roots of

(4.2) are close to those of

yb+c = (−1)cx−a,
i.e. b + c evenly spaced points on a circle (Figure 3, left). As x increases, two complex conjugate roots y, ȳ

approach the real axis and eventually become equal for x = x0 (Figure 3, center), so that there are two additional

real roots for x > x0. As x → +∞, the roots of (4.2) are divided into two groups, b roots close to the origin,

approximated by those of

yb = (−1)cx−(a+c),
and c roots close to −x, corresponding to values of z = −x − y close to the origin and approximated by the

roots of

zc = (−1)bx−(a+b)

(Figure 3, right). Hence, identifying the fiber of πx for x small with Z/(b+ c) in a manner compatible with the

cyclic ordering, the two points which merge for x = x0 (the vanishing cycle of πx at x0) differ from each other

by exactly b (this can also be checked by numerical experimentation).

The above argument gives us that the monodromy around one of the branch points x0 of πx, e.g. the branch

point located on the positive real axis or immediately above it, is a transposition (q0, q0 + b); changing the

identification between the reference fiber of πx above x∗ and the cyclic group Z/(b + c) if necessary, we can

assume that q0 = 0.

We now find the monodromy around the other branch points of πx. For this purpose, observe that the

group G = Z/(a + b + c) acts on X by (x, y, z) 7→ (xζj , yζj , zζj), where ζ = exp( 2πi
a+b+c ), and that this action

preserves Σ0, mapping the fiber of πx above x to the fiber above xζj . Hence, denoting by y′, y′′ the two

points of the fiber above x∗ = εeiθ0 which converge to each other as x moves radially outwards to x0 (those
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labelled 0 and b), we know that the two points of the fiber above x∗ζ
j which converge to each other as x moves

radially outwards to x0ζ
j are y′ζj and y′′ζj . We now transport these two values of y from the fiber π−1x (x∗ζ

j)

to π−1x (x∗) along the arc x(t) = x∗e
2πit for t ∈ [0, j

a+b+c ]. Approximating the b + c points of π−1x (εeiθ) by

the roots of (−1)cyb+c = ε−ae−iaθ, the parallel transport along the considered arc induces a multiplication by

exp(2πi a
b+c

j
a+b+c ). Observing that

ζj exp(2πi j a
(b+c)(a+b+c) ) = exp(2πi j

b+c ),

we obtain that the two points of π−1x (x∗) which become equal as x is moved first counterclockwise around the

origin and then radially outwards to x0ζ
j are those which correspond to the elements j and b+ j of Z/(b+ c).

Hence, the monodromy of πx around x0ζ
j (joining x∗ to x0ζ

j in the prescribed way) is the transposition (j, b+j),

which completes the proof of Lemma 4.1. By the way, remark that the comparison between the values j = 0

and j = a+ b+ c is consistent with our determination of the monodromy around x = 0.

4.2. The vanishing cycles. Now that the fiber Σ0 is well-understood, we compute the vanishing cycles of the

Lefschetz fibration W : X → C by studying the degeneration of Σλ as λ approaches a critical value of W .

The curve Σλ becomes singular when two branch points of the projection πx : Σλ → C∗ merge with each

other, giving rise to a nodal point. This occurs whenever (4.1) admits a double root. Considering the logarithmic

derivative of the left-hand side, we obtain the relation a
x − b+c

λ−x = 0, which leads to x = a
a+b+cλ for a double

root of (4.1), and substituting we obtain the equation

(4.3) λa+b+c =
(a+ b+ c)a+b+c

aa bb cc

for the a+ b+ c critical values of W (this equation can also be obtained directly).

For symmetry and for simplicity, we will choose the smooth curve Σ0 = W−1(0) as our reference fiber of

the Lefschetz fibration W : X → C, and we will choose straight lines for the arcs γj joining the origin to the

various critical values λj = λ0ζ
−j of W (0 ≤ j < a + b + c), where λ0 is the real positive root of (4.3) and

ζ = exp( 2πi
a+b+c ). Hence, in order to construct the category of Lagrangian vanishing cycles of W , we need to

understand how the smooth fiber Σ0 above the reference point 0 degenerates to the nodal curve Σλj when λ

moves radially from 0 to λj .

We first consider the motion of the branch points of πx as λ increases along the positive real axis from 0 to

the critical value λ0. For each value of λ, the a+b+c branch points are given by the roots of (4.1). When λ = 0,

they all lie on a circle centered at the origin, as represented in Figure 2. As λ → λ0, two complex conjugate

branch points converge to each other, so that for λ = λ0 the equation (4.1) has a double root x = a
a+b+cλ0 on the

positive real axis (Figure 4, center). Finally, for λ→ +∞, the roots of (4.1) split into two groups, one of a points

close to the origin that can be approximated by the roots of xa = Kb,cλ
−(b+c) (where Kb,c = b−bc−c(b+ c)b+c),

and one of b + c points close to λ for which ξ = λ − x can be approximated by the roots of ξb+c = Kb,cλ
−a

(Figure 4, right). Hence, it can be checked that the two branch points of πx : Σ0 → C∗ which merge for λ→ λ0

are those with argument arg x = ± b+c
a+b+cπ, and that the projection to C∗ of the corresponding vanishing cycle
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-

6

q
q
q

q

q
q
q

Rex

Imx

δ0

a
λ = λ0

-

6

q q
q qq qq

λ→ +∞

-

6

q q
q q q qq

Figure 4. The branch points of πx for λ ∈ R+ ((a, b, c) = (4, 2, 1))
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is an arc δ0 which is symmetric with respect to the real axis, intersects it only once in its positive part, and

remains everywhere inside the circle containing the critical values of πx (Figure 4, left).

More precisely, the above discussion gives us a topological description of the vanishing cycle L0 ⊂ Σ0, up to

homotopy. Namely, two of the b + c lifts to Σ0 of the arc δ0 ⊂ C∗ have common end points (the ramification

points of πx lying above the end points of δ0), and their union forms a closed loop L′0 in Σ0. This loop is a

topological vanishing cycle, i.e. it shrinks to a point in Σλ when λ → λ0, but a priori it is only homotopic to

the symplectic vanishing cycle L0 (obtained by parallel transport using the symplectic connection).

The actual position of the vanishing cycle L0 inside Σ0 depends on the choice of the symplectic form ω on X;

for a given ω it can be calculated numerically (and it can be checked that for “reasonable” choices of ω, L0 and

L′0 intersect all other vanishing cycles in the same manner). However, this calculation is unnecessary for our

purposes. Indeed, if we endow X with a symplectic form that is anti-invariant by complex conjugation, then

the vanishing cycle L0 is invariant by complex conjugation, i.e. complex conjugation maps L0 to itself in an

orientation-preserving manner, and the same is true of L′0. Since L0 and L
′
0 are homotopic to each other in Σ0,

their (oriented) invariance under complex conjugation is sufficient to imply that they are Hamiltonian isotopic,

which means that for the purpose of determining categories of vanishing cycles, L0 and L
′
0 are interchangeable.

If we deform ω to a non-exact form, complex conjugation invariance is lost. The intersection patterns between

vanishing cycles remain the same for small deformations (and can be forced to remain the same even for large

deformations by performing suitable Hamiltonian isotopies), but the calculation of the coefficient assigned to

a given pseudo-holomorphic curve involves its symplectic area and hence requires one to work with the actual

vanishing cycles rather than their topological approximations. Hence, we may obtain non-trivial deformations

of the category of vanishing cycles; however, these deformations only amount to modifications of the structure

constants of the products mk, rather than changes in the Floer complexes themselves or in the types of pseudo-

holomorphic curves that may arise.

In any case, except at the very end of the argument, we will always be considering symplectic forms that are

anti-invariant under complex conjugation, in which case the approximation of L0 by L′0 is legitimate.

We now consider the other vanishing cycles Lj of the Lefschetz fibration W . Recall that the group G =

Z/(a+ b+ c) acts on X, in a manner that preserves Σ0; moreover, W : X → C is G-equivariant. If we assume

the symplectic form ω to be G-invariant, the symplectic connection and the associated parallel transport will

also be G-equivariant. Therefore, since the arc γj ⊂ C joining the origin to λj = λ0ζ
−j is the image of γ0 by

the action of ζ−j (where ζ = exp( 2πi
a+b+c )), the same is true of the corresponding Lefschetz thimbles, and hence

of the vanishing cycles in Σ0. This gives us a description of Lj for all values of j. As in the case of L0, we will

consider, rather than Lj itself, a loop L′j ⊂ Σ0 which is homotopic to Lj and can be obtained as a double lift

via πx : Σ0 → C∗ of an embedded arc δj ⊂ C∗. The loop L′j is defined to be the image of L′0 by the action of

ζ ′j , which means that δj is the image of δ0 by a rotation of angle − 2π j
a+b+c . If, in addition to its G-invariance,

ω is assumed to be anti-invariant under complex conjugation, then L′j is Hamiltonian isotopic to Lj , so we can

work with L′j instead of Lj .

Hence, to summarize the above discussion, we have the following lemma:

Lemma 4.2. The vanishing cycles Lj ⊂ Σ0 (0 ≤ j < a + b + c) are homotopic (and, if ω is invariant under

the action of Z/(a+ b+ c) and anti-invariant under complex conjugation, Hamiltonian isotopic) to closed loops

L′j ⊂ Σ0 which project by πx to arcs δj ⊂ C∗ as represented in Figure 5 (the end points of δj are the branch

points of πx for which arg x = −2π j
a+b+c ± π b+c

a+b+c ).

In the following sections, we assume that ω is Z/(a + b + c)-invariant and anti-invariant under complex

conjugation, and we implicitly identify Lj with L′j .
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Figure 5. The vanishing cycles Lj ⊂ Σ0

4.3. The Floer complexes. The objects of the category Lagvc(W, {γj}) are described by Lemma 4.2; we now

determine its morphisms by studying the intersections between the closed loops Lj ⊂ Σ0. This simply involves

looking carefully at Figures 2 and 5 in order to determine, among the intersections between δi and δj , which

ones lift to intersections between Li and Lj .

Lemma 4.3. The direct sum
⊕

i<j CF
∗(Li, Lj) is a free module of total rank 3(a+ b+ c) over the coefficient

ring, generated by the following intersection points:

xi ∈ CF ∗(Li, Li+a) (0 ≤ i < b+ c), x̄i ∈ CF ∗(Li, Li+b+c) (0 ≤ i < a),

yi ∈ CF ∗(Li, Li+b) (0 ≤ i < a+ c), ȳi ∈ CF ∗(Li, Li+a+c) (0 ≤ i < b),

zi ∈ CF ∗(Li, Li+c) (0 ≤ i < a+ b), z̄i ∈ CF ∗(Li, Li+a+b) (0 ≤ i < c).

Moreover, the Floer differential is trivial, i.e. m1 = 0.

To determine CF ∗(Li, Lj) for given 0 ≤ i < j < a + b + c, one must look for intersection points between

the projected arcs δi and δj . The arcs δi and δj intersect only if j − i ≤ b + c or j − i ≥ a; in all other cases,

δi ∩ δj = ∅ and hence CF ∗(Li, Lj) = 0. More precisely, δi ∩ δj contains one point if j − i ≤ b+ c, and one point

if j − i ≥ a; if both conditions hold simultaneously, then |δi ∩ δj | = 2 (see Lemma 4.2 and Figure 5). Moreover,

if equality holds (j− i = b+ c or j− i = a), then the corresponding intersection occurs at an end point of δi and

δj , i.e. a branch point of πx. In this case, the intersection of δi and δj always lifts to a transverse intersection

of Li and Lj , at the corresponding critical point of πx; this accounts for the generators xi and x̄i mentioned in

the statement of Lemma 4.3.

When j − i < b + c or j − i > a, we need to consider the structure of the branched covering πx in order to

determine whether intersections between δi and δj lift to intersections between Li and Lj . Call pi the branch

point of πx with argument arg x = −2π j
a+b+c − π b+c

a+b+c , which is an end point of δi, and define similarly pj .

When j − i < b+ c, consider the corresponding intersection point q ∈ δi ∩ δj , and use the arcs joining pj to q in

δj and q to pi in δi to define an arc η ⊂ C∗ joining pj to pi, with a rotation angle of 2π j−i
a+b+c around the origin.

It follows from Lemma 4.1 (cf. also Figure 2) that, over a neighborhood of η, we can consistently label the sheets

of the covering πx by elements of Z/(b + c), in such a way that the monodromies around the branch points pi

and pj are transpositions of the form (ki, ki + b) and (kj , kj + b), with ki − kj = j − i. Hence, near the point q,

the vanishing cycle Li lies in the two sheets of πx labelled ki and ki + b, and similarly for Lj ; the intersections

of Li with Lj above q correspond to the elements of {ki, ki+ b}∩ {kj , kj + b}. Since 0 < ki− kj = j− i < b+ c,

this intersection is empty unless ki = kj+ bmod b+ c, i.e. j− i = b, which corresponds to the generator yi of the

Floer complex, or kj = ki + bmod b+ c, i.e. j − i = c, which corresponds to the generator zi. When j − i > a,

one proceeds similarly, introducing an arc in C∗ joining pj to pi through the relevant intersection point q′ of δi

with δj , with a rotation angle of 2π( j−i
a+b+c − 1) around the origin. The sheets of πx containing Li and Lj above

the intersection point q′ are now labelled k′i, k
′
i+ b and k

′
j , k

′
j + b, with k

′
i and k

′
j two constants in Z/(b+ c) such

that k′i− k′j = j− i− (a+ b+ c) = j− i− amod b+ c. Therefore, the two cases where Li and Lj intersect above
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q′ are when i+ j = a+ b, which corresponds to the generator z′i of the Floer complex, and when i+ j = a+ c,

which corresponds to y′i.

At this point it is worth observing that, for generic values of (a, b, c), each Floer complex CF ∗(Li, Lj) has

total rank at most one, so that the Floer differential is necessarily zero. However, for specific values of (a, b, c)

we may have numerical coincidences leading to more than one intersection between two vanishing cycles; the

most striking example is that of the usual projective plane, (a, b, c) = (1, 1, 1), for which |Li∩Lj | = 3 ∀i < j (cf.

Figure 5). Nonetheless, even in these cases, the Floer differential vanishes, because Li and Lj always realize the

minimal geometric intersection number between closed loops in their homotopy classes, as can be checked by

enumerating the various posible cases. This minimality of intersection implies that Σ0 contains no non-constant

immersed disc with boundary in Li ∪ Lj , and hence that the Floer differential vanishes.

Another way to prove the vanishing of the Floer differential is to endow Σ0 and C∗ with almost-complex

structures which make the projection πx holomorphic, and to observe that the projection to C∗ of a pseudo-

holomorphic disc in Σ0 with boundary in Li∪Lj is a pseudo-holomorphic disc in C∗ with boundary in δi∪δj . If
|δi ∩ δj | = 1, the maximum principle implies that the projected pseudo-holomorphic disc is a constant map, and

hence that the disc in Σ0 is contained in a fiber of πx, which implies that it is also constant. If |δi ∩ δj | = 2, one

reaches the same conclusion by observing the respective positions of the two intersection points in C∗ (a non-

constant disc would have to pass through the origin). As before, one concludes that the absence of non-trivial

pseudo-holomorphic discs makes the Floer differential identically zero, which completes the proof of Lemma 4.3.

4.4. The product structures. The aim of this section is to prove the following results concerning the category

Lagvc(W, {γj}):

Lemma 4.4. The higher products mk (k ≥ 3) are all identically zero.

Lemma 4.5. There exist non-zero constants αuv,i such that

m2(xi, yi+a) = αxy,i z̄i, m2(xi, zi+a) = αxz,i ȳi,

m2(yi, zi+b) = αyz,i x̄i, m2(yi, xi+b) = αyx,i z̄i,

m2(zi, xi+c) = αzx,i ȳi, m2(zi, yi+c) = αzy,i x̄i.

All other compositions (except those involving identity morphisms) vanish.

These results follow from a careful observation of the boundary structure of a pseudo-holomorphic disc in

Σ0 with boundary in
⋃
Lj . Endow Σ0 with any almost-complex structure, and let u : D2 → Σ0 be a pseudo-

holomorphic map from the disc with k+1 ≥ 3 marked points on its boundary to Σ0, mapping each segment on

the boundary to an arc in one of the Lagrangian submanifolds Lj . Each “corner” of the image of u corresponds

to an intersection point between two of the vanishing cycles, and as such it corresponds to a generator of the

Floer complex.

In accordance with Lemma 4.3, we can classify the generators of the Floer complex into three families, those

of type x (corresponding to generators xi, x̄i), those of type y (generators yi, ȳi), and those of type z (generators

zi, z̄i). Moreover, observe that the total intersection of each Li with all other vanishing cycles consists of 6

points, two of each type: depending on the value of i, Li is either the source of the morphism xi or the target

of x̄i−b−c, and it is either the source of x̄i or the target of xi−a; similarly for types y and z.

The manner in which these points are arranged along the loop Li can be seen easily by looking at Figure

5 and recalling the discussion in the previous section. Recall that Li passes through two branch points of πx,

which split it into two halves (lifts of δi lying in different sheets of πx). One of these branch points corresponds

to xi or x̄i−b−c, while the other corresponds to x̄i or xi−a. In between them, we have, on one half of Li, one

intersection of type y (either yi or ȳi−a−c) and one of type z (either z̄i or zi−c); on the other half of Li, we have
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Figure 6. The intersections of Li with the other vanishing cycles

similarly one intersection of type y (either ȳi or yi−b) and one of type z (either zi or z̄i−a−b). This structure is

summarized in Figure 6.

An important property is that, for every one of the six portions of Li delimited by these intersection points,

one of the two immediately adjacent components of Σ0−
⋃
Lj (on either side of Li) is unbounded (it is denoted

by 0 or ∞ on Figure 6 depending on whether its image under πx contains the origin or the point at infinity in

C∗). These unbounded components form an alternating pattern around Li, changing side (left or right) every

time one of the intersection points is crossed.

On the other hand, the image of the pseudo-holomorphic map u may not intersect any of the unbounded

components of Σ0 −
⋃
Lj , because otherwise the maximum principle would imply that the image of u is

unbounded. This imposes very strong constraints on the behavior of u along the boundary of the disc. Namely,

consider two consecutive marked points (“corners”), such that the portion of boundary (“edge”) in between

them is mapped to an arc η (oriented according to the boundary orientation of the unit disc) contained in

the vanishing cycle Li. Then, η is exactly one of the six portions of Li delimited by its intersections with the

other vanishing cycles, and its orientation is determined by the requirement that the component of Σ0 −
⋃
Lj

immediately to the left of η be bounded (see Figure 6). Moreover, the local behavior of u at an end point p

of η is “convex”, i.e. u locally maps into only one of the four regions delimited locally by the two vanishing

cycles meeting at p. In other words, the boundary of Im(u) is an oriented piecewise smooth curve θ ⊂ ⋃Lj
which always turns left at every intersection point it encounters. This boundary behavior has several important

consequences.

Lemma 4.6. Among three consecutive corners of the image of u, there is always exactly one of each type x, y, z.

Proof. Observe that two consecutive corners of the image of u are necessarily of different types (because two

adjacent intersections of Li with other vanishing cycles are always of different types). Let p, q, r be three

consecutive corners of the image of u, such that the edge from p to q lies in a vanishing cycle Li and the edge

from q to r lies in a vanishing cycle Lj . The knowledge of the types of the points p and q completely determines

them, which in turn determines the type of r. For example, if p is of type y and q is of type z, then on the

diagram of Figure 6 the edge joining them is the lowermost portion of Li; in particular the edge from p to

q is adjacent to an unbounded component of Σ0 whose image under πx contains the origin. Considering the

intersection diagram for Lj (similar to Figure 6), the point q can be located by comparison with the diagram

for Li (in our example, q is the point to the upper left of the diagram). Moreover, the direction from which θ

reaches q can be determined by identifying the unbounded component to which it is adjacent (in our example,

the component whose image under πx contains the origin, so θ reaches q from the innermost side of the diagram);

since θ turns left at q, this determines the edge from q to r and hence the type of r (in our example, r is the

left-most point on the intersection diagram, and hence of type x). It can be checked easily that in all six cases,

the type of r is different from those of p and q. ¤

Next, recall that by definition the successive edges of the image of u lie inside vanishing cycles Li0 , Li1 , . . . , Lik

with i0 < i1 < · · · < ik (see Definition 3.1), and observe that following θ at a corner of u leads from a vanishing
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cycle Li to another vanishing cycle Lj , with i < j if and only if the intersection point is xi, yi or zi, and i > j

if and only if the intersection point is x̄j , ȳj or z̄j (see Figure 6). Therefore, all corners of u but one correspond

to generators of the Floer complexes among {xi, yi, zi}, while the last corner (between the edge on Lik and the

edge on Li0) correspond to a generator among {x̄i, ȳi, z̄i}.
With this observation, Lemma 4.4 follows immediately from Lemma 4.6. Indeed, assume that there exists a

pseudo-holomorphic map u from a disc with k + 1 marked points to Σ0, with edges lying in vanishing cycles

Li0 , Li1 , . . . , Lik (0 ≤ i0 < i1 < · · · < ik < a+ b+ c), contributing to the product mk, for some k ≥ 3. Among

the first three corners of u, one is among the generators xi, one is among the yi, and one is among the zi.

Therefore, i3 = i0 + a + b + c, which contradicts the inequality i3 < a + b + c. Hence the moduli spaces of

pseudo-holomorphic curves involved in the definition of mk are all empty for k ≥ 3, which implies that mk = 0.

Lemma 4.5 also follows immediately at this point: in the case of a pseudo-holomorphic map u from a disc with

3 marked points, the three corners p, q, r are all of different types (by Lemma 4.6), and the first two corners p, q

correspond to generators among {xi, yi, zi} while the last one r corresponds to a generator among {x̄i, ȳi, z̄i}.
Therefore, p and q completely determine r, and moreover it is easy to check from the above discussion and

from Figures 5 and 6 that the image of the pseudo-holomorphic map u is also uniquely determined by the pair

(p, q). For example, if p is of type x and q is of type y, then necessarily there exists i < c such that p = xi,

q = yi+a, and r = z̄i; moreover, it is easy to check (see Lemma 4.2 and Figure 5) that the moduli space

determining the coefficient of z̄i in m2(xi, yi+a) consists of a single curve, regular, whose image Txy,i is the

triangular region of Σ0 delimited by arcs joining p, q, r in the vanishing cycles Li, Li+a, Li+a+b. Therefore, we

have m2(xi, yi+a) = αxy,i z̄i, where αxy,i = ± exp(−Area(Txy,i)). The situation is the same in all other cases.

Remark. The a + b + c triangles Txy,i (i < c), Tyz,i (i < a), Tzx,i (i < b) are all related to each other via

the action of the cyclic group Z/(a+ b+ c). Indeed, the diagonal multiplication by a power of ζ = exp( 2πi
a+b+c )

induces a permutation of the vanishing cycles and of the intersection points, preserving the cyclic ordering of

the Li and the types of their intersection points, and hence mapping every triangle in Σ0 with boundary in
⋃
Li to another such triangle. A similar description holds for the triangles Tyx,i, Tzy,i, Txz,i.

4.5. Maslov index and grading. The aim of this section is to define a Z-grading on the Floer complexes

CF ∗(Li, Lj), and to compute the degree of the various generators. Using the triviality of the canonical bundles

of Σ0 and X, it is easy to prove (by considering the Lefschetz thimbles) that the Maslov class of Li is trivial,

and hence that it is possible to lift each vanishing cycle to a graded Lagrangian submanifold of Σ0, that we

denote again by Li. This lets us associate a degree to each generator of the Floer complex.

Lemma 4.7. There exists a natural choice of gradings, for which deg(xi) = deg(yi) = deg(zi) = 1 and

deg(x̄i) = deg(ȳi) = deg(z̄i) = 2.

Assume for simplicity that the symplectic form ω is compatible with the standard complex structure of Σ0

inherited from that of (C∗)3, which allows us to define explicitly a holomorphic volume form Ω on Σ0 (i.e., a

non-vanishing holomorphic 1-form). Then, given an oriented Lagrangian submanifold L ⊂ Σ0, the phase of L

is the function φL : L→ R/2πZ whose value at every point is the argument of the (non-zero) complex number

obtained by evaluating Ω on an oriented volume element in L (in the 1-dimensional case, φL(x) = argΩ(v)

for v a tangent vector to L at x defining the orientation of L). The Maslov class is the 1-cocycle representing

the obstruction to lift φL to a real-valued function; if it vanishes, then L can be lifted to a graded Lagrangian

submanifold, i.e. we can choose a real-valued lift of the phase, φ̃L : L → R. In the 1-dimensional case, the

relationship between Maslov index and phase is very simple: given a transverse intersection point p between

two graded Lagrangians L,L′ ⊂ Σ0, the Maslov index of p ∈ CF ∗(L,L′) is equal to the smallest integer greater

than 1
π (φL′(p)− φL(p)).
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Figure 7. The deformed cycles L̃j ((a, b, c) = (1, 1, 1))

The holomorphic volume form Ω on Σ0 can be defined from the standard holomorphic volume form Ω0 =

d log x ∧ d log y ∧ d log z on (C∗)3 by taking residues first along the hypersurface X of equation xaybzc = 1 and

then along the level set W = 0. We can characterize Ω as follows: Ω is the restriction to Σ0 of a 1-form (that

we denote again by Ω) such that Ω ∧ dw ∧ d(xaybzc) = Ω0, i.e. (using the fact that xaybzc = 1 along X)

Ω ∧ (dx+ dy + dz) ∧ (
a

x
dx+

b

y
dy +

c

z
dz) =

dx ∧ dy ∧ dz
xyz

.

(In fact the 1-form Ω determined in this way may differ from the “usual” one by a real positive factor, irrelevant

for our purposes). At this point it is easy to see why the Maslov class of Li is trivial: indeed, Ω ∧ dw extends

to a non-vanishing (2, 0)-form on X, whose phase over the Lefschetz thimble Di admits a real lift; because W

maps Di to an embedded arc, the phase of Ω ∧ dw over the boundary of Di and the phase of Ω over Li differ

by a constant term, so that the latter also admits a real lift.

At every point of Σ0 except for the branch points of πx, the 1-form Ω can be expressed as Θ dx, for some

meromorphic function Θ over Σ0 (with simple poles at the branch points of πx). The above equation becomes:

Θ( cz − b
y ) = 1

xyz , which determines Θ. At this point, the most direct method of determination of the phases

of the vanishing cycles Li at their intersection points (and hence of the corresponding Maslov indices) involves

computer calculations; however we will attempt to give a sketch of a geometric argument.

If we restrict ourselves to the domain where x is very small, then we have y ' −z, so that Θ ' 1
(b+c)xy .

Therefore, argΘ ' − arg x− arg y in this region of Σ0. Hence, the calculations are simplified if we can deform

the vanishing cycles Li in such a way that the intersection points of a given type (y or z) occur close to the origin

in C∗. Of course this process preserves gradings and Maslov indices only if the intersection pattern between the

relevant vanishing cycles is not affected by the deformation. We consider a deformation where Li is replaced by

a loop L̃i ⊂ Σ0, obtained as a double lift of a piecewise smooth arc δ̃i ⊂ C∗ joining two branch points of πx (a

deformation of δi with fixed end points). The arc δ̃0 consists of three line segments, two joining the end points

p, p̄ ∈ crit(πx) to two complex conjugate points q, q̄ very close to the origin, and such that 0 < Re q ¿ Im q ¿ 1.

The other arcs δ̃i are obtained from δ̃0 by the action of Z/(a+ b+ c) (see Figure 7).

Assuming that b < a + c, this deformation can be carried out for intersections of type y without affecting

the intersection pattern between Li and Li+b or Li+a+c, and in such a way that the intersection occurs in the

central portion of δ̃i (see Figure 7). The same is true for intersections of type z when c < a + b. If we choose

a ≥ b ≥ c then these two assumptions hold, so we can use this method to determine the degrees of yi, zi, ȳi, z̄i.

We start by considering the portion of L̃0 lying above the central segment in δ̃0 (joining q to q̄). Recall

that, for x small, the b + c sheets of the covering πx (i.e. the b + c roots of xayb(−x − y)c = 1) can be

approximated by the roots of yb+c = (−1)cx−a. Hence, the possible values for the argument of y are arg y '
− a
b+c arg x+π c

b+c mod 2π
b+c . It follows from Lemma 4.1 that the two sheets of πx containing L̃0 are those where

arg y ' − a
b+c arg x+ επ c

b+c , for ε = ±1. Hence, we have argΘ ' a−b−c
b+c arg x− επ c

b+c . We choose to orient L̃0

in such a way that its projection goes counterclockwise around the origin in the sheet corresponding to ε = 1,

and clockwise in the sheet corresponding to ε = −1. With this understood, since the projection of oriented

tangent vector to L̃0 is positively proportional to εi, we obtain the following formula for the phase of the central
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portion of L̃0, modulo 2π:

(4.4) φ(L̃0) '
a− b− c
b+ c

arg x+ ε
(π
2
− π c

b+ c

)
.

We choose a lift of L̃0 (and hence also L0 via the isotopy between them) as a graded Lagrangian by setting the

(real-valued) phase of L̃0 to be given by (4.4), choosing the determination of arg x with the smallest absolute

value; checking that the choices made in the two portions of L̃0 corresponding to ε = ±1 are consistent with

each other is a tedious task, best left to a computer program.

The phase of L̃j = ζ−j · L̃0 is easily deduced from the above calculations for L̃0. Indeed, the above formula

for Θ implies that the value of argΘ at the point ζ−j · p differs from that at the point p by 4π j
a+b+c . On the

other hand, the argument of the x component of the tangent vector to L̃j at ζ−j · p differs from that of the

tangent vector to L̃0 at p by −2π j
a+b+c . Therefore, (4.4) implies that

φ(L̃j) '
a− b− c
b+ c

(
arg x+

2πj

a+ b+ c

)
+ ε
(π
2
− π c

b+ c

)
+

2πj

a+ b+ c
,

or equivalently

(4.5) φ(L̃j) '
a− b− c
b+ c

arg x+ ε
(π
2
− π c

b+ c

)
+

2πj a

(a+ b+ c)(b+ c)
.

This formula can also be obtained directly by observing that the two sheets of πx containing L̃j are those where

arg y ' − a
b+c arg x− 2π j

b+c + επ c
b+c , for ε = ±1, by Lemmas 4.1 and 4.2. As in the case of L̃0, we choose a lift

of L̃j whose (real-valued) phase is given by (4.5), using the determination of arg x closest to −2π j
a+b+c .

We are now in a position to compare the phases of two vanishing cycles at one of their intersection points.

Consider an intersection point between L̃i and L̃i+b, corresponding to the intersection yi between Li and Li+b.

Comparing the values of arg y on both vanishing cycles, it is easy to see that the intersection occurs in the ε = 1

part of Li and in the ε = −1 part of Li+b. Therefore, (4.5) yields that, at the intersection point,

φ(L̃i+b)− φ(L̃i) ' −2
(π
2
− π c

b+ c

)
+

2π b a

(a+ b+ c)(b+ c)
= π − 2π b

a+ b+ c
,

which is between 0 and π since we have assumed that b < a+ c. Therefore, we have deg yi = 1. Similarly, the

intersection between L̃i and L̃i+c corresponding to zi occurs in the ε = −1 part of L̃i and the ε = 1 part of

L̃i+c, so that (4.5) yields

φ(L̃i+c)− φ(L̃i) ' 2
(π
2
− π c

b+ c

)
+

2π c a

(a+ b+ c)(b+ c)
= π − 2π c

a+ b+ c
,

which is also between 0 and π since c < a+b. Therefore, deg zi = 1. In the case of ȳi, things are similar, but with

one new subtlety: in accordance with the above prescriptions, the determinations of arg x at the intersection

point to be used for L̃i and L̃i+a+c differ by 2π. Therefore, from (4.5) we now get (taking ε = −1 for L̃i and

+1 for L̃i+a+c)

φ(L̃i+a+c)− φ(L̃i) ' −2π
a− b− c
b+ c

+ 2
(π
2
− π c

b+ c

)
+

2π (a+ c) a

(a+ b+ c)(b+ c)
= π +

2π b

a+ b+ c
,

which is between π and 2π; therefore, deg ȳi = 2. Similarly, for z̄i one finds that

φ(L̃i+a+b)− φ(L̃i) ' −2π
a− b− c
b+ c

− 2
(π
2
− π c

b+ c

)
+

2π (a+ b) a

(a+ b+ c)(b+ c)
= π +

2π c

a+ b+ c
,

which is also between π and 2π, so that deg z̄i = 2.

Finally, the degrees of xi and x̄i can be deduced from those of the intersections of types y and z by considering

e.g. the triangles Txy,i, which gives that deg xi+deg yi+a = deg z̄i, and hence deg xi = 1, and Tyz,i, which gives

that deg yi + deg zi+b = deg x̄i, and hence deg x̄i = 2. This completes the proof of Lemma 4.7.
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4.6. The exterior algebra structure. The aim of this section is to determine the coefficients appearing in

Lemma 4.5, by studying the orientations of the moduli spaces of pseudo-holomorphic curves and the symplectic

areas of their images (Txy,i, . . . ).

Lemma 4.8. If the symplectic form ω is anti-invariant under complex conjugation and invariant under the

action of Z/(a + b + c), then there exists a constant α ∈ C∗ such that αxy,i = αyz,i = αzx,i = α and αyx,i =

αzy,i = αxz,i = −α for all i. Therefore, m2(xi, yi+a) = −m2(yi, xi+b), m2(yi, zi+b) = −m2(zi, yi+c), and

m2(zi, xi+c) = −m2(xi, zi+a).

The coefficients αxy,i, . . . are determined up to sign by the symplectic areas of the triangular regions Txy,i, . . .

inside Σ0. To simplify notations, define

Ti =





Txy,i if 0 ≤ i < c,

Tzx,i−c if c ≤ i < b+ c,

Tyz,i−b−c if b+ c ≤ i < a+ b+ c,

and T ′i =





Txz,i if 0 ≤ i < b,

Tyx,i−b if b ≤ i < b+ c,

Tzy,i−b−c if b+ c ≤ i < a+ b+ c,

so that Ti and T
′
i are the two triangles having either xi or x̄i−b−c as one of their vertices. We similarly define αi

and α′i to be the coefficients associated to Ti and T
′
i in the formula giving m2, namely αi = ± exp(−Area(Ti))

and α′i = ± exp(−Area(T ′i )). Then, as observed at the end of §4.4, the invariance properties of ω imply that the

a+ b+ c triangles Ti form a single orbit under the action of Z/(a+ b+ c), with ζ−q · Ti = Ti+q, and similarly

for the other triangles T ′i , with ζ
−q · T ′i = T ′i+q. Moreover, complex conjugation exchanges these two families of

triangular regions, by mapping Ti to T
′
b+c−i (see Figure 5). It follows that all of these triangles have the same

symplectic area, and therefore that the various constants αi and α
′
i are all equal up to sign.

In order to identify the signs, one needs to orient the relevant moduli spaces of pseudo-holomorphic discs in

some consistent way, which requires the choice of a spin structure over each Lagrangian Li. As explained at the

end of §3.1, we need to endow each Li with the spin structure which extends to the corresponding thimble, i.e.

the non-trivial one.

We now describe a convenient rule for determining the correct signs in the one-dimensional case, due to Seidel

[36]. We start with the case of trivial spin structures. Then to each intersection point p ∈ Li ∩ Lj (i < j) one

can associate an orientation line Op. This orientation line is canonically trivial when deg p is even, whereas in

the odd degree case, a choice of trivialization of Op is equivalent to a choice of orientation of the line TpLj . If

one considers a pseudo-holomorphic map u : D2 → Σ0 contributing to mk, whose image is a polygonal region

with k + 1 vertices p0, . . . , pk, then the corresponding sign factor is actually an element of the tensor product

Λ = Op0⊗· · ·⊗Opk . We can define a preferred trivialization of Λ by choosing, at each vertex of odd degree, the

orientation of the vanishing cycle which agrees with the positive orientation on the boundary of the image of u.

The sign factor associated to u is then equal to +1 with respect to this trivialization of Λ (or −1 with respect to

the other trivialization). In the presence of non-trivial spin structures, this rule needs to be modified as follows:

fix a marked point on each Li carrying a non-trivial spin structure (distinct from its intersection points with

the other vanishing cycles); then the sign associated to u is affected by a factor of −1 for each marked point

that the boundary of u passes through [36].

It is worth mentioning that, while it is clear from the above construction that the individual sign factors

fail to be canonical and depend on some choices, the various possibilities yield equivalent categories, since the

coefficients of Floer homology and Floer products simply differ by the conjugation action of some diagonal

matrix with ±1 coefficients.

In our case, we choose trivializations of the orientation lines as follows: for every intersection point p ∈ Li∩Lj
of degree 1 (i.e., one of xi, yi, zi), we orient TpLj consistently with the boundary orientation of the single
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triangular region among T0, . . . , Ta+b+c−1 having p among its vertices. If we consider trivial spin structures,

then with this convention the sign factor associated to each triangle Ti is by definition equal to +1. In the

case of T ′i , at each of the two vertices of degree 1 the chosen trivialization of TpLj disagrees with the boundary

orientation of the triangular region, so that for trivial spin structures we get a sign factor of (−1)2 = +1 again.

Since we need to consider non-trivial spin structures, we must introduce a marked point on each Li; for example,

we choose this marked point in the portion of Li that corresponds to the top-most edge on Figure 6. With this

choice, the boundary of each T ′i passes through exactly one marked point (between the vertex of type z and

that of type y), while the boundary of Ti does not meet any marked point. Therefore, with these conventions,

the sign factors are +1 for all Ti and −1 for all T ′i ; this completes the proof of Lemma 4.8.

4.7. Non-exact symplectic forms and non-commutative deformations. The purpose of this section is to

describe the effect on the category of Lagrangian vanishing cycles of W of relaxing the assumptions made above

on the symplectic form, losing in particular its exactness. In order to make the vanishing cycle construction

well-defined, we will keep assuming that ω induces a complete Kähler metric on X and that the gradient of

W with respect to this metric is bounded from below outside of a compact set. For example, choosing a 3× 3

positive definite Hermitian matrix (aij), we can endow X with the symplectic form

ω = i
3∑

i,j=1

aij
dzi
zi
∧ dz̄j
z̄j
.

Observe that H2(X,Z) ' Z is generated by the torus T = {(x, y, z) ∈ X, |x| = |y| = |z| = 1} (for simplicity we

assume gcd(a, b, c) = 1). An easy calculation shows that

(4.6) [ω] · [T ] = 4π2i (a (a23 − a32) + b (a31 − a13) + c (a12 − a21)).

Many other choices of symplectic form are equally acceptable, and it is important to mention that the most

sensible course of action in presence of a non-explicit symplectic form is to search for a topological interpretation

of the category of Lagrangian vanishing cycles, involving only topological quantities such as the cohomology

class of ω.

In comparison to the restrictive situation considered above, the vanishing cycles Lj remain in the same smooth

isotopy classes, because one can continuously deform from one symplectic structure to the other. Hence, the

vanishing cycles are smoothly isotopic to the loops L′j ⊂ Σ0 introduced in §4.2, but not necessarily Hamiltonian

isotopic to them. Nonetheless, because the ends of the non-compact Riemann surface Σ0 all have infinite

volume, we can easily deform L′j into loops L′′j ⊂ Σ0 that are Hamiltonian isotopic to the vanishing cycles,

without modifying the pattern of the intersections between them. More precisely, recall from §4.2 that each L′j

is the double lift via πx : Σ0 → C∗ of an arc joining two branch points of πx. Then, by “pulling” a suitable

portion of one of the two lifts towards an end of Σ0 (either towards infinity or towards zero in the x-axis

projection), we can make L′j sweep through an arbitrarily large amount of symplectic area to obtain the desired

L′′j , without affecting the intersection points with the other vanishing cycles.

Since the vanishing cycles are Hamiltonian isotopic to the loops L′′j , we may use L′′j instead of the actual

vanishing cycles in order to determine the category D(Lagvc(W )). Hence, the symplectic deformation does

not affect in any way the generators of the Floer complexes and the types of pseudo-holomorphic maps to

be considered. The only significant change has to do with the coefficients assigned to the various pseudo-

holomorphic discs appearing in the definition of m2, as the symplectic areas of the various triangular regions

Ti and T
′
i (i = 0, . . . , a + b + c − 1) inside Σ0 may now take more or less arbitrary values instead of all being

equal to each other. Because the description of ω and of the vanishing cycles is not explicit, it is hopeless (and

useless) to calculate the individual coefficients αi and α
′
i. However, we can state the following result:
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Lemma 4.9. Lemmas 4.3–4.7 remain valid in the more general case of an arbitrary symplectic form inducing

a complete Kähler metric on X for which |∇W | is bounded from below at infinity. Moreover, the structure

constants for the composition m2 are related by the identity
∏a+b+c−1
i=0 αi∏a+b+c−1
i=0 α′i

=

∏
αxy,i

∏
αyz,i

∏
αzx,i∏

αyx,i
∏
αzy,i

∏
αxz,i

= (−1)a+b+c exp(−[ω] · [T ]).

The assumption of completeness of the induced Kähler metric can be dropped if we have some other way

of ensuring that the vanishing cycles are well-defined and that the deformation from L′j to L′′j can be carried

out without introducing new intersection points. In fact, the invariance of Floer homology under Hamiltonian

isotopies essentially implies that the introduction of new intersection points in the deformation does not have

any particular impact on the derived category, so the only thing that matters is actually the well-definedness

of the vanishing cycles.

Although Lemma 4.9 seems to give only very partial information about the constants αi and α
′
i, it actually

completely determines the category D(Lagvc(W )). Indeed, simply by rescaling the generators of the Floer

complexes we can modify the coefficients αi and α
′
i almost at will: for example, replacing xi with λxi has the

effect of simultaneously multiplying αi and α
′
i by λ

−1; similarly, rescaling the generator yi simultaneously affects

αi−a (or αi+b+c) and α′i+b. Still assuming gcd(a, b, c) = 1, it is not hard to check that the only quantity left

invariant by all rescalings of the generators is the ratio
∏
αi/

∏
α′i, which is therefore sufficient to characterize

the derived category. This observation that the symplectic deformations of D(Lagvc(W )) are governed by a

single parameter is naturally related to the fact that the second Betti number of X is equal to 1.

Proof of Lemma 4.9. The key observation to be made here is that the boundary of the 2-chain C =
∑
Ti −∑

T ′i ⊂ Σ0 is exactly ∂C = −∑Li (for a suitable choice of orientation of the Li). Indeed, looking at Figure 6,

each of the six portions of Li arises exactly once as an edge of one of the triangular regions, and the boundary

orientation of the triangular region is the “clockwise” orientation of Li in the case of T0, . . . , Ta+b+c−1, and the

“counterclockwise” orientation in the case of T ′0, . . . , T
′
a+b+c−1. Recalling that each vanishing cycle Li bounds

a Lefschetz thimble Di in X, we can build a 2-cycle C̃ ⊂ X by capping C with these a+ b+ c Lagrangian discs.

Next, observe that the sign factors arising from the orientations of the moduli spaces remain the same as in

§4.6, and that
∫
Di
ω = 0, so that

∏
αi∏
α′i

= (−1)a+b+c
∏

exp(−
∫
Ti
ω)

∏
exp(−

∫
T ′
i

ω)
= (−1)a+b+c exp(−

∫

C

ω) = (−1)a+b+c exp(−[ω] · [C̃]).

Hence, the last step in the proof is to show that [C̃] and [T ] are the same elements of H2(X,Z) ' Z. A

simple way to achieve this is to compute the intersection pairing of C̃ with the relative cycle R = {(x, y, z) ∈
X, x, y, z ∈ R+}, which intersects T transversely once at the point (1, 1, 1).

To understand how R intersects C̃, we compare the values ofW over R and over C̃. By construction, C̃ is the

union of the 2-chain C ⊂ Σ0, over which W vanishes identically, and the various Lefschetz thimbles Dj , which

W maps to straight line segments joining the origin to the critical values λj . On the other hand, the restriction

to R of W = x + y + z is a proper function which takes real positive values. With respect to the standard

complex structure, R is totally real and W is holomorphic, so any critical point of W|R is also a critical point of

W , and in particular the minimum of W over R is a critical value of W . Indeed, a simple computation shows

that the minimum of W over R is exactly (a + b + c)(aabbcc)−1/(a+b+c) = λ0, achieved at the critical point p0

of W corresponding to the critical value λ0.

It follows that the only point where C̃ and R intersect is p0. Moreover, by considering the local model near

p0, it is easy to check that this intersection is transverse, since the Hessian of W at p0 restricts to the tangent



40 DENIS AUROUX, LUDMIL KATZARKOV, AND DMITRI ORLOV

space Tp0D0 as a negative definite real quadratic form, and to Tp0R as a positive definite real quadratic form.

Therefore the intersection number between C̃ and R is equal to 1 (for a suitable choice of orientation that we

will not discuss here), and it follows that [C̃] = [T ] in H2(X,Z). ¤

4.8. B-fields and complexified deformations. So far we have identified a real one-parameter family of

deformations of the category of Lagrangian vanishing cycles of W . To extend this to a complex family of

deformations, we need to introduce a non-trivial B-field, i.e. a closed 2-form B ∈ Ω2(X,R). The presence of a

B-field affects Fukaya categories by modifying the nature of the objects to be considered: namely, one should

consider pairs consisting of a Lagrangian submanifold and a vector bundle over it equipped with a projectively

flat (rather than flat) connection with curvature equal to −iB ⊗ Id (depending on conventions, a factor of 2π

is sometimes added).

In our case, we are considering Lagrangian vanishing cycles Lj ' S1 arising as boundaries of the Lefschetz

thimbles Dj . Since dimLj = 1, over Lj every bundle is trivial and every connection is flat; moreover, we can

safely restrict ourselves to the case of line bundles. However, the presence of the B-field results in a nontrivial

holonomy. By Stokes’ theorem, if a U(1)-connection ∇j = d+ iαj is the restriction to Lj of a U(1)-connection

with curvature −iB over Dj , then the holonomy of ∇j around Lj is given by hol∇j
(Lj) = exp(

∫
Lj
iαj) =

exp(
∫
Dj
i dαj) = exp(−i

∫
Dj
B). Since this property characterizes the connection ∇j uniquely up to gauge, we

can drop the line bundle and the connection from the notation when considering the objects (Lj , Ej ,∇j) of

Lagvc(W, {γj}).
However, we do need to take the holonomy of ∇j into account when computing the twisted Floer

differential and compositions mk, since the weight attributed to a given pseudo-holomorphic disc u :

(D2, ∂D2)→ (Σ0,
⋃
Lj) is modified by a factor corresponding to the holonomy along its boundary, and becomes

±hol(u(∂D2)) exp(i
∫
D2 u

∗(B + iω)). More precisely, for each intersection point p ∈ Li ∩ Lj we need to fix an

isomorphism between the fibers (Ei)|p and (Ej)|p; then it becomes possible to define the holonomy along the

closed loop u(∂D2) using the parallel transport induced by ∇j from one “corner” of u to the next one, and the

chosen isomorphism at each corner.

In this context, we now have the following result characterizing D(Lagvc(W )):

Lemma 4.10. Lemmas 4.3–4.7 remain valid for an arbitrary symplectic form inducing a complete Kähler

metric on X for which |∇W | is bounded from below at infinity, and an arbitrary B-field. Moreover, the structure

constants for the composition m2 are related by the identity
∏a+b+c−1
i=0 αi∏a+b+c−1
i=0 α′i

=

∏
αxy,i

∏
αyz,i

∏
αzx,i∏

αyx,i
∏
αzy,i

∏
αxz,i

= (−1)a+b+c exp(i[B + iω] · [T ]).

Proof. We again consider the 2-chain C =
∑
Ti −

∑
T ′i ⊂ Σ0, with boundary ∂C = −∑Lj , and the 2-cycle

C̃ ⊂ X obtained by capping C with the Lagrangian discs Dj . We now have:

∏
αi∏
α′i

=
(−1)a+b+c∏
hol∇j

(Lj)

∏
exp(i

∫
Ti
B + iω)

∏
exp(i

∫
T ′
i

B + iω)
=

(−1)a+b+c∏
exp(

∫
Dj
−iB)

exp(i

∫

C

B + iω)

= (−1)a+b+c exp(i[B + iω] · [C̃]).

This completes the proof since [C̃] = [T ]. ¤

It is interesting to observe that this statement reinterpretes the quantity
∏
αi/

∏
α′i in purely topological

terms, thus avoiding the pitfall of having to compute the individual coefficients attached to the various pseudo-

holomorphic discs in Σ0. This outcome is rather unsurprising since, whereas the individual coefficients αi and α
′
i
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are heavily dependent on a number of arbitrary choices, the underlying derived category of Lagrangian vanishing

cycles is expected to depend only on the meaningful parameters – in our case, the cohomology class [B + iω].

We would like to suggest that this feature reflects a general principle. Namely, the various structure co-

efficients of the Floer differentials and products involved in the definition of the category Lagvc(W ) depend

on many choices and have no precise meaning in general. However, different sets of values of the structure

coefficients may become equivalent after a suitable rescaling of the generators of the Floer complexes or other

similarly benign operations. Hence, we can reduce to a much smaller set of parameters (certain combinations

of the individual Floer coefficients) that actually govern the structure of the category. Then, we expect the

following statement to hold in much greater generality than the examples studied here:

Property 4.11. The structure of the derived category of Lagrangian vanishing cycles is governed by deformation

parameters which are all of the form exp(i[B + iω] · [Cj ]) for suitable 2-cycles Cj ⊂ X.

This is of course ultimately related to the fact that Floer homology and Floer products can be defined over

Novikov rings, counting pseudo-holomorphic discs with coefficients that reflect relative homology classes rather

than actual symplectic areas; the version with complex coefficients that we used here is then recovered from the

version with Novikov ring coefficients by evaluation at the point [B + iω].

5. Hirzebruch surfaces

We now consider the case of Hirzebruch surfaces Fn, for which the mirror Landau-Ginzburg model consists

of X = (C∗)2 equipped with a superpotential of the form

W = x+ y +
a

x
+

b

xny

for some non-zero constants a, b. For simplicity we will only consider the case of an exact symplectic form.

Since different values of the constants a, b lead to mutually isotopic exact symplectic Lefschetz fibrations, the

actual choices do not matter (we can e.g. assume a = b = 1 or any other convenient choice).

5.1. The case of F0 and F1. The first two Hirzebruch surfaces F0 = CP1 × CP1 and F1 (i.e., CP2 blown up

at one point) need to be considered separately.

Proposition 5.1. When n = 0, there exists a system of arcs {γi} such that Lagvc(W, {γi}) is equivalent to

the full subcategory of Db(coh(F0)) whose objects are O, O(1, 0), O(0, 1), O(1, 1). Therefore, D(Lagvc(W )) '
Db(coh(F0)).

Proof. The four critical values of W = x + y + a
x + b

y are ±2a1/2 ± 2b1/2. Up to an exact deformation

which does not affect the category of Lagrangian vanishing cycles, we can choose a > b > 0, and assume

the symplectic form to be anti-invariant under reflection about the imaginary axis (x, y) 7→ (−x̄,−ȳ). We

choose Σ0 = W−1(0) as our reference fiber, and join it to the singular fibers by considering arcs γi that pass

below the real axis in C, so that the clockwise ordering of the critical values agrees with their natural ordering

−2a1/2 − 2b1/2 < −2a1/2 + 2b1/2 < 2a1/2 − 2b1/2 < 2a1/2 + 2b1/2. The projection πx to the x variable realizes

Σ0 as a double cover of C∗ branched at four points, and the vanishing cycles Li can be represented as double

lifts of the arcs δi ⊂ C∗ shown in Figure 8.

It follows that Hom(L1, L2) = 0, while Hom(L0, L1), Hom(L2, L3), Hom(L0, L2), and Hom(L1, L3) are two-

dimensional; label the corresponding intersection points L0 ∩ L1 = {s, t}, L2 ∩ L3 = {s′, t′}, L0 ∩ L2 = {u, v},
L1 ∩ L3 = {u′, v′}. Finally, Hom(L0, L3) has rank 4. By considering the triangular regions delimited by the

vanishing cycles in Σ0, and using the symmetry of the configuration with respect to (x, y) 7→ (−x̄,−ȳ), we can

easily show that m2(s, u
′) = m2(s

′, u), m2(t, u
′) = m2(t

′, u), m2(s, v
′) = m2(s

′, v), and m2(t, v
′) = m2(t

′, v);
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Figure 8. The vanishing cycles for F0

these four elements of Hom(L0, L3) are proportional to the generators. All other products vanish (mk = 0 for

k 6= 2). Finally, gradings can be chosen so that all morphisms have degree 0 (the verification is left to the

reader).

Therefore, the category Lagvc(W, {γi}) is indeed equivalent to the full subcategory of Db(coh(F0)) whose

objects are O, O(1, 0), O(0, 1), O(1, 1), as can be seen by thinking of (s, t) and (u, v) as homogeneous coordinates

on the two factors of F0 = CP1 × CP1. Since these four line bundles form a full strong exceptional collection

generating Db(coh(F0)), the result follows. ¤

Alternatively, Proposition 5.1 can also be obtained as a direct corollary of a general product formula for

categories of Lagrangian vanishing cycles of Lefschetz fibrations of the form (X1 ×X2,W1 +W2) ([6], cf. also

§6.3).

Proposition 5.2. When n = 1, there exists a system of arcs {γi} such that Lagvc(W, {γi}) is equivalent to the

full subcategory of Db(coh(F1)) whose objects are O, π∗(TP2(−1)), π∗(OP2(1)), OE (where E is the exceptional

curve and π : F1 → CP2 is the blow-up map). Therefore, D(Lagvc(W )) ' Db(coh(F1)).

Proof. We choose a = b = 1, and equip X with a symplectic form that is anti-invariant under complex conju-

gation. Let (λi)0≤i≤3 be the four critical values of W = x+ y+ 1
x + 1

xy , ordered clockwise around the origin so

that Im(λ0) > 0, λ1 ∈ R+, Im(λ2) < 0, and λ3 ∈ R−. We choose Σ0 = W−1(0) as reference fiber, and choose

the arcs γi joining 0 to λi to be straight lines. The projection πx to the x variable realizes Σ0 as a double cover

of C∗ branched at four points, and the vanishing cycles Li can be represented as double lifts of the arcs δi ⊂ C∗
shown in Figure 9.

r
r

r
r δ0

δ1

δ2

δ3

6
b

Figure 9. The vanishing cycles for F1

The corresponding category of vanishing cycles can then be studied explicitly. In fact, much of the work

has already been carried out in §4, since the situation for L0, L1, L2 is rigorously identical (including grading

and orientation issues) to that previously considered for the three vanishing cycles of the Lefschetz fibration

mirror to CP2. While the choice of grading used in §4 yields morphisms in degrees 1 and 2, a different choice

of gradings (shifting L1 by 1 and L2 by 2) ensures that all morphisms between L0, L1, L2 have degree 0. This

readily implies that a category equivalent to the derived category of CP2 can be realized inside D(Lagvc(W ))

as a full subcategory, with the exceptional collection L0, L1, L2 corresponding to the exceptional collection

O, TP2(−1),O(1) dual to the standard one. (This claim can of course also be verified “by hand” following the

same outline of argument as in §4).
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From Figure 9 it is clear that Hom(L0, L3) and Hom(L2, L3) are one-dimensional, (call their generators

p0 and p2), while Hom(L1, L3) has rank 2 (call its generators q and q′). To be consistent with the notation

of §4, call x0, y0, z0 (resp. x1, y1, z1; resp. x̄, ȳ, z̄) the generators of Hom(L0, L1) (resp. Hom(L1, L2); resp.

Hom(L0, L2)). Then, looking at the various pseudo-holomorphic discs in Σ0 (including a constant one at

the triple intersection of L0, L2, L3), we have: m2(x0, q) = m2(x0, q
′) = 0, m2(y0, q) = αp0, m2(y0, q

′) = 0,

m2(z0, q) = 0, m2(z0, q
′) = α′ p0, m2(x1, p2) = 0, m2(y1, p2) = −α q′, m2(z1, p2) = α′ q, m2(x̄, p2) = p0,

m2(ȳ, p2) = m2(z̄, p2) = 0 (for some non-zero constants α, α′). Moreover, for a suitable choice of grading of L3

it can be checked that all morphisms have degree 0.

It is then easy to check that these formulas correspond exactly to the composition formulas in the full

subcategory of Db(coh(F1)) whose objects are the pull-backs O, π∗(TP2(−1)), π∗(OP2(1)), and the structure

sheaf OE of the exceptional curve (If one follows the analogy suggested by the notation between the morphisms

from L0 to L2 and the homogeneous coordinates on CP2, then the blow-up point is located at (1 : 0 : 0)). The

result follows. ¤

5.2. Other Hirzebruch surfaces. For larger values of n, the situation becomes different:

Lemma 5.3. If n ≥ 2, then the Lefschetz fibrations over (C∗)2 defined by W = x + y + 1
x + 1

xny and W̃ =

x+ y + 1
xny are isotopic. Therefore, D(Lagvc(W )) ' D(Lagvc(W̃ )) ' Db(coh(CP2(n, 1, 1))).

Proof. Consider the maps Wa = x + y + a
x + 1

xny for a ∈ [0, 1]. The key observation is that the n + 2 critical

points of Wa remain distinct and stay in a compact subset of (C∗)2. Indeed, the critical points of Wa are the

solutions of 


1− a

x2 − n
xn+1y = 0

1− 1
xny2 = 0,

i.e.

y = nx1−n(x2 − a)−1, and xn−2(x2 − a)2 − n2 = 0.

It is easy to check that for |a| ≤ 1 the roots of this equation satisfy 1 ≤ |x| ≤
√
n+ 1. It follows that

|x2−a| = n|x|1−n
2 is bounded between two positive constants, and hence that y = nx1−n(x2−a)−1 = (x2−a)/nx

is also bounded between two positive constants independently of a. Hence the critical points ofWa remain inside

a compact subset of (C∗)2. Moreover, the polynomial P (x) = xn−2(x2− a)2−n2 always has simple roots when

|a| ≤ 1, since the roots of P ′(x) = xn−3(x2 − a)((n + 2)x2 − (n − 2)a) are 0, ±√a, and ±
√

n−2
n+2a, where P

never vanishes. In fact, even though this is not necessary for the argument, the critical values of Wa also remain

distinct throughout the deformation, since at a critical point we have Wa = n+2
n x+ n−2

n
a
x , which as a function

of x is injective over {|x| ≥ 1}.
Therefore, Wa defines an exact symplectic Lefschetz fibration on (C∗)2 for all a ∈ [0, 1], which allows us to

match the vanishing cycles of W1 = W with those of W0 = W̃ . The resulting categories of vanishing cycles

differ at most by a deformation of the structure coefficients of the compositions m2, but since the isotopy is

through exact Lagrangian vanishing cycles, we need not worry about those (see also the argument for Lemma

4.9).

We can therefore conclude that D(Lagvc(W )) ' D(Lagvc(W̃ )). Since ((C∗)2, W̃ ) is exactly the mirror to

CP2(n, 1, 1) studied at length in §4, our result for weighted projective planes implies that this category is also

equivalent to Db(coh(CP2(n, 1, 1))). ¤

For n = 2, it is well-known thatDb(coh(F2)) ' Db(coh(CP2(2, 1, 1))), so we get the expected result. However,

for n ≥ 3 this is no longer true. Namely, the fully faithful functor MKn constructed in §2.7 allows us to view

the category Db(coh(Fn)) as a full subcategory of Db(coh(CP2(n, 1, 1))), generated by the exceptional collection
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Figure 10. The deformation b→ 0 for n = 3

(O,O(1),O(n),O(n+1)). It is therefore a natural question to ask whether this subcategory can be singled out

on the mirror side, by selecting 4 of the n + 2 critical points of W . It turns out that this is indeed the case.

Our first result in this direction is the following:

Lemma 5.4. For n ≥ 3, in the limit b→ 0, n−2 of the critical values of the superpotentialsWb = x+y+ 1
x+

b
xny

go to infinity, while the remaining four critical points stay in a bounded region.

Proof. The x coordinates of the critical points of Wb are the solutions of

xn−2(x2 − 1)2 − n2b = 0.

As b → 0, four roots of this equation converge to ±1, while the remaining n − 2 converge to 0. Since at a

critical point we also have y = nbx1−n(x2 − 1)−1 = 1
n (x − 1

x ) and Wb =
n+2
n x + n−2

n
1
x , we conclude that four

critical points of Wb converge to (±1, 0), with the corresponding critical values converging to ±2, while the

others escape to infinity. ¤

This suggests that the deformation b→ 0 singles out a subcategory of D(Lagvc(Wb)), obtained by restricting

oneself to the preimage of a disc containing only four critical values of Wb. We start by describing the case

n = 3.

For n = 3, we can study explicitly the deformation process as b changes from 1 to a value close to 0. For

b = 1 the five critical values of Wb form a pentagon roughly centered at the origin (and can for all practical

purposes be identified with the critical values of the superpotential mirror to CP2(3, 1, 1)). As b decreases along

the real axis, two things happen: first, the two complex conjugate critical points with Re(Wb) > 0 merge and

turn into two real critical points; then, one of these two real critical points escapes to infinity as b → 0. The

process is easier to visualize if one avoids the two values of b in the interval (0, 1) for which two critical values

of Wb coincide, by considering e.g. a deformation from b = 1 to b = 0 where the imaginary part of b is kept

positive. It is then easy to check that, as b → 0, two critical values converge to 2 and two others converge to

−2, while the fifth one escapes to infinity in the manner represented on Figure 10.

Therefore, if we consider the category of Lagrangian vanishing cycles associated to the system of arcs γ̃0, . . . , γ̃4

represented on Figure 10, the deformation b→ 0 singles out the full subcategory generated by the four vanishing

cycles L̃0, L̃1, L̃3, L̃4 (where L̃i is the vanishing cycle associated to γ̃i). The collection of arcs {γ̃i} looks very

different from the collection {γi} considered in §4, but they are related to each other by a sequence of elementary

sliding transformations performed on consecutive arcs (see Figure 11).

q q
B
B
BB

£
£
££γi γi+1

-¾
qq

B
B
BB

J
JJ
γiLγi+1

Figure 11. The (left) sliding operation (γi, γi+1)←→ (Lγi+1, γi)
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It follows immediately from Definition 3.1 that every ordered collection of arcs yields a full exceptional

collection generating D(Lagvc(W )); it was shown by Seidel that (left or right) sliding operations on collections

of arcs correspond to (left or right) mutations of the corresponding exceptional collections [34]. With this is

mind, and identifying implicitly the critical points of W1 with those of the superpotential mirror to CP2(3, 1, 1),
it is easy to check that the left dual to the exceptional collection (L̃0, . . . , L̃4) associated to the arcs {γ̃i} is

equivalent (up to some shifts) to the exceptional collection associated to the arcs (γ2, γ3, γ4, γ0, γ1). Moreover,

using Z/5-equivariance for CP2(3, 1, 1), there exists an auto-equivalence of D(Lagvc(W1)) which maps this

exceptional collection to the one associated to the collection of arcs (γ0, . . . , γ4) considered in §4.
Recall that the two exceptional collections for Db(coh(CP2(3, 1, 1))) presented in §2 are mutually dual (cf.

Example 2.15), and that Theorem 3.3 identifies the exceptional collection associated to the arcs (γ0, . . . , γ4)

with that given by Corollary 2.27. Therefore, there is an equivalence of categories which maps the exceptional

collection (L̃0, . . . , L̃4) for D(Lagvc(W1)) to the exceptional collection (O, . . . ,O(4)) for Db(coh(CP2(3, 1, 1))).
The full subcategory of D(Lagvc(W1)) singled out by the deformation b → 0 is that generated by the excep-

tional collection (L̃0, L̃1, L̃3, L̃4), which corresponds under the above identification to the full subcategory of

Db(coh(CP2(3, 1, 1))) generated by the exceptional collection (O,O(1),O(3),O(4)), which is in turn known to

be equivalent to the derived category of the Hirzebruch surface F3 (see §2.7).

A similar analysis of the deformation b→ 0 can be carried out for all values of n, and leads to the following

result:

Proposition 5.5. Given any n ≥ 3 and RÀ 2, and assuming that b is sufficiently close to 0, the full subcategory

of D(Lagvc(Wb)) arising from restriction to the open domain {|Wb| < R} is equivalent to Db(coh(Fn)).

In order to prove this proposition we need a lemma about mutations in the standard full exceptional collection

(O,O(1), . . . ,O(n+ 1)) on the weighted projective plane CP2(n, 1, 1). Let us fix a pair (O(k),O(k + 1)) with

2 < k < n. Denote by Fk+2 the mutation of the object O(k + 2) to the left through O(k),O(k + 1), i.e.

Fk+2 ∼= L(2)O(k + 2). Performing the same mutations on O(k + 3), . . . ,O(n+ 1) we obtain exceptional objects

Fi = L(2)O(i) for k + 2 ≤ i ≤ n+ 1 and a new exceptional collection

(O, . . . ,O(k − 1), Fk+2, . . . , Fn+1,O(k),O(k + 1)) .

Denote by Gk, Gk+1 the left mutations of O(k),O(k + 1) respectively through all Fi. We get an exceptional

collection

(O, . . . ,O(k − 1), Gk, Gk+1, Fk+2, . . . , Fn+1) .

Denote by D the triangulated subcategory of the category Db(coh(CP2(n, 1, 1))) generated by the collection

(O,O(1), Gk, Gk+1)

Lemma 5.6. The triangulated subcategory D coincides with the subcategory

〈O,O(1),O(n),O(n+ 1)〉.

Proof. This Lemma is equivalent to the statement that the subcategory 〈Gk, Gk+1〉 coincides with the subcate-

gory 〈O(n),O(n+1)〉. First, let us show thatO(n) andO(n+1) belong to 〈Gk, Gk+1〉. Since Hom(O(l),O(s)) = 0

for l = n, n + 1 and 0 ≤ s < k, we can immediately conclude that O(n) and O(n + 1) belong to

〈Gk, Gk+1, Fk+2, . . . , Fn+1〉. Therefore, it is sufficient to check that

Hom
•
(Fi,O(n)) = 0, Hom

•
(Fi,O(n+ 1)) = 0

for all k + 2 ≤ i ≤ n+ 1.
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By definition of Fi there are distinguished triangles

Ti −→ Vi ⊗O(k + 1) −→ O(i),(5.1)

Fi −→Wi ⊗O(k) −→ Ti,(5.2)

with Vi = Hom(O(k + 1),O(i)) and Wi = Hom(O(k), Ti). It is clear that Vi ∼= Si−k−1U, where U is the two

dimensional vector space H0(CP2(n, 1, 1),O(1)). Considering the sequence of Hom’s from O(k) to the triangle

(5.1), it is easy to check that Wi
∼= Si−k−2U (we use an isomorphism Λ2U ∼= k).

We have isomorphisms

Hom(Vi ⊗O(k + 1),O(n+ 1)) = Si−k−1U∗ ⊗ Sn−kU ∼=
i−k−1⊕

j=0

Sn−i+1+2jU,

which implies that

Hom(Ti,O(n+ 1)) ∼=
i−k−1⊕

j=1

Sn−i+1+2jU.

On the other hand, there are isomorphisms

Hom(Wi ⊗O(k),O(n+ 1)) = Si−k−2U∗ ⊗ Sn−k+1U ∼=
i−k−1⊕

j=1

Sn−i+1+2jU,

and, moreover, it can be checked that the natural morphism Hom(Ti,O(n+1))→ Hom(Wi⊗O(k),O(n+1)) is an

isomorphism. Hence, Hom
•
(Fi,O(n+1)) = 0 for all k+2 ≤ i ≤ n+1. By the same reasons Hom

•
(Fi,O(n)) = 0

for all k + 2 ≤ i ≤ n+ 1. Thus the subcategory 〈O(n),O(n+ 1)〉 is contained in 〈Gk, Gk+1〉.
Since Hom(Gk, Gk+1) ∼= U ∼= Hom(O(n),O(n + 1)), these two categories are both equivalent to the derived

category of representations of the quiver with two vertices and two arrows • ⇒ •, and, as consequence, it can

be easily shown that they are equivalent. ¤

Proof of Proposition 5.5. The argument is similar to the case n = 3: in the initial configuration, for b = 1, the

n + 2 critical values of Wb approximate a regular polygon, and can essentially be identified with the critical

values of the superpotential mirror to CP2(n, 1, 1). We label these critical values by integers from 0 to n + 1,

with 0 corresponding to the positive real critical value, and continuing counterclockwise. As the value of b

is decreased towards 0, pairs of complex conjugate critical values of Wb (those labelled k and n + 2 − k, for
1 ≤ k ≤ n

2 ), successively converge towards each other. For 2 ≤ k < n
2 , the corresponding vanishing cycles are

disjoint, and the two complex conjugate critical values essentially exchange their positions before escaping to

infinity (with complex arguments close to ∓ k−1
n−2 2π) for b → 0. On the other hand, for k = 1 the two complex

conjugate critical points labelled 1 and n+ 1 merge and turn into two real critical points, one of which escapes

to infinity as b→ 0; similarly for k = n
2 if n is even.

If instead of following the real axis we carry out the deformation b → 0 with Im(b) small positive, then we

can avoid all the values of b for which two critical values of Wb coincide, which allows us to keep track of the

manner in which n− 2 of the critical values escape to infinity. This is represented on Figure 12 (left).

Observe that the vanishing cycles at the critical points corresponding to labels in the range 1 ≤ k < n
2 are

disjoint from those at the critical points with labels in the range n
2 + 2 ≤ k ≤ n. Therefore, for the purposes of

determining the remaining vanishing cycles as b→ 0, the family of Lefschetz fibrations Wb is equivalent to one

where the various critical values escape to infinity in a slightly different manner, with the critical values coming

from the ImW < 0 half-plane staying “to the left” (towards the negative real axis) of those coming from the

ImW > 0 half-plane, as pictured on Figure 12 (right).
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Figure 12. The deformation b→ 0 (n = 8)

Therefore, if we consider the category of Lagrangian vanishing cycles associated to a system of arcs containing

the four arcs γ̃0, γ̃1, γ
′, γ′′ represented on Figure 12 right, then the full subcategory singled out by the deformation

b→ 0 is that generated by the four vanishing cycles L̃0, L̃1, L
′, L′′ associated to these arcs. A suitable collection

of arcs can be built by a sequence of sliding operations, starting from a collection {γ̃i, 0 ≤ i ≤ n + 1} where

γ̃0 and γ̃1 are as pictured, and all the γ̃i remain outside of the unit disc. Identify implicitly the critical points

of W1 with those of the superpotential mirror to CP2(n, 1, 1), and recall that sliding operations correspond

to mutations. Then the left dual to the exceptional collection (L̃0, . . . , L̃n+1) associated to the arcs {γ̃i} is

equivalent (up to some shifts) to the exceptional collection associated to the arcs (γ2, γ3, . . . , γn+1, γ0, γ1) (using

the notation of §4). Using Z/(n+2)-equivariance, the latter is equivalent to the exceptional collection associated

to the system of arcs (γ0, . . . , γn+1) considered in §4.
Recall that the two exceptional collections forDb(coh(CP2(n, 1, 1))) presented in §2 are mutually dual (cf. Ex-

ample 2.15), and that Theorem 3.3 identifies the exceptional collection associated to the arcs (γ0, . . . , γn+1) with

that given by Corollary 2.27. Therefore, there is an equivalence of categories which maps the exceptional collec-

tion (L̃0, . . . , L̃n+1) for D(Lagvc(W1)) to the exceptional collection (O, . . . ,O(n+1)) for Db(coh(CP2(n, 1, 1))).
Next, let k = bn+32 c, so that γ′ and γ′′ have the same endpoints as γ̃k and γ̃k+1 respectively. First slide

γ̃k+2, . . . , γ̃n+1 to the left of γ̃k and γ̃k+1 to obtain another system of arcs (γ̃0, . . . , γ̃k−1, ηk+2, . . . , ηn+1, γ̃k, γ̃k+1).

Then the arcs obtained by sliding γ̃k and γ̃k+1 to the left of ηk+2, . . . , ηn+1 are homotopic to γ′ and γ′′. This gives

us a new system of arcs (γ̃0, γ̃1, . . . , γ̃k−1, γ
′, γ′′, ηk+2, . . . , ηn+1), which determines a full exceptional collection

(L̃0, L̃1, . . . , L̃k−1, L
′, L′′,Λk+2, . . . ,Λn+1) in D(Lagvc(W1)).

By construction, the full subcategory 〈L̃0, L̃1, L′, L′′〉 of the category D(Lagvc(W1)) is equivalent to the

triangulated subcategory 〈O,O(1), Gk, Gk+1〉 of Db(coh(CP2(n, 1, 1))), which by Lemma 5.6 coincides with

〈O,O(1),O(n),O(n+ 1)〉. As seen in §2.7 this category is equivalent to the derived category of the Hirzebruch

surface Fn, which completes the proof. ¤

It is also possible to prove Proposition 5.5 by a direct calculation involving the monodromy of W1, instead

of using Lemma 5.6. Starting from the description of the vanishing cycles associated to the arcs γi in §4, one
can determine first the vanishing cycles L̃i associated to γ̃i for all i, and then those associated to γ ′ and γ′′. It

is then possible to check that, although the vanishing cycles associated to γ ′ and γ′′ do not quite correspond to

L̃n and L̃n+1, after sliding γ′ and γ′′ around each other a certain number of times one obtains two vanishing

cycles that are Hamiltonian isotopic to L̃n and L̃n+1.
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6. Further remarks

6.1. Higher-dimensional weighted projective spaces. Many of the arguments in §4 extend to higher-

dimensional weighted projective spaces, working by induction on dimension in a manner similar to the ideas

in §5 of [4]. Indeed, the mirror to the weighted projective space CPn(a0, . . . , an) is the affine hypersurface

X = {xa0

0 . . . xann = 1} ⊂ (C∗)n+1, equipped with the superpotential W = x0+ · · ·+xn and an exact symplectic

form ω that we can choose to be invariant under the diagonal action of Z/(a0 + · · · + an) and anti-invariant

under complex conjugation for simplicity. It is easy to check that W has a0 + · · · + an critical points over X,

all isolated and non-degenerate; the corresponding critical values are the roots λj of

λa0+···+an =
(a0 + · · ·+ an)

a0+···+an

aa0

0 . . . aann
.

As in the two-dimensional case we use Σ0 =W−1(0) as our reference fiber, and join it to the singular fibers of

W via straight line segments γj ⊂ C joining the origin to λj .

In order to understand the vanishing cycles Lj ⊂ Σ0, we consider as before the projection to one of the

coordinate axes, for example π0 : (x0, . . . , xn) 7→ x0. For generic values of λ, the map π0 : Σλ → C∗ defines

an affine Lefschetz fibration on Σλ = W−1(λ), with a0 + · · ·+ an singular fibers. These singular fibers are the

preimages of the critical values of π0 over Σλ, which are the roots of

(6.1) xa0

0 (λ− x0)a1+···+an =
(a1 + · · ·+ an)

a1+···+an

aa1

1 . . . aann

(compare with (4.1)). This equation acquires a double root whenever λ is one of the λj ; the manner in which

two of the roots approach each other as one moves from λ = 0 to λ = λj along the arc γj defines an arc

δj ⊂ C∗, which is a matching path for the Lefschetz fibration π0 : Σ0 → C∗. As in the two-dimensional case, the

Lagrangian vanishing cycle Lj ⊂ Σ0 is isotopic to a sphere L′j which lies above the arc δj ; the generic fiber of

π0|L′j : L
′
j → δj ⊂ C∗ is now a Lagrangian (n− 2)-sphere inside the fiber of π0.

Because of the similarity between equations (6.1) and (4.1), it is easy to check that Lemma 4.2 extends almost

verbatim to the higher-dimensional case, substituting a0 for a and a1 + · · ·+ an for b+ c.

In order to determine the Floer complexes CF ∗(Li, Lj), or equivalently CF
∗(L′i, L

′
j), we need to understand,

for each point of δi ∩ δj , how L′i and L
′
j intersect each other inside the corresponding fiber of π0. Because L′i

and L′j each arise from matching pairs of vanishing cycles of the Lefschetz fibration π0, this can be done by

studying in more detail the topology of the fiber of π0 : Σ0 → C∗ and the manner in which it degenerates as

one moves from a generic value of x0 to one of the critical values. In fact, we can use the same approach to

study the vanishing cycles of π0 : Σ0 → C∗ as in the case of W : X → C, namely project the fiber Fµ = π−10 (µ)

to one of the coordinates, e.g. x1. This gives rise to a map π1 : Fµ → C∗, which is again a Lefschetz fibration

(whose fibers are now (n− 3)-dimensional), with a1+ · · ·+ an singular fibers corresponding to values of x1 that

solve the equation

µa0xa1

1 (−µ− x1)a2+···+an =
(a2 + · · ·+ an)

a2+···+an

aa2

2 . . . aann
,

which presents a double root precisely when µ is a solution of (6.1) (for λ = 0). The process can go on similarly,

considering successive restrictions to fibers and coordinate projections until we reach the easily understood case

of 0-dimensional fibers; once this process is completed, it becomes possible to describe explicitly CF ∗(L′i, L
′
j)

in terms of the available combinatorial data. The final result is the following:

Proposition 6.1. For i < j, the vanishing cycles L′i and L
′
j intersect transversely, and

|L′i ∩ L′j | = #{I ⊂ {0, . . . , n},
∑

k∈I

ak = j − i}.
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Figure 13. The case of CP3: images by π0 of the vanishing cycles L′j ⊂ Σ0 of W (left), and
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Hence the Floer complex CF ∗(L′i, L
′
j) is naturally isomorphic to the degree j − i part of the exterior algebra on

n+ 1 generators of respective degrees a0, . . . , an. Moreover, the Floer differential is trivial, i.e. m1 = 0.

Instead of providing a complete proof, we simply illustrate Proposition 6.1 by considering the example of the

projective space CP3. In that case, Σ0 is an affine K3 surface, and π0 : Σ0 → C∗ is a fibration by affine elliptic

curves, with four singular fibers. The four vanishing cycles L′j ⊂ Σ0 project to arcs δj ⊂ C∗ as shown on Figure

13 (left).

Using the projection π1 to the second coordinate, we can view each of the fibers of π0 : Σ → C∗ as a

double cover of C∗ branched in 3 points (Figure 13, right). To describe the monodromy of the elliptic fibration

π0, we choose a reference fiber Fµ0
= π−10 (µ0) for some µ0 ∈ C∗ close to 0 on the positive real axis. The

monodromy of π0 around the origin is the diffeomorphism of Fµ0
obtained by rotating the three branch points

of π1 counterclockwise by 2π/3. To describe the four vanishing cycles of π0, we join the regular value µ0 of π0

to each of the four critical values by considering arcs which start at µ0, rotate clockwise around the origin from

arg µ = 0 to arg µ = −π
4 − j π2 (0 ≤ j ≤ 3), and then go radially outwards to the corresponding critical values

of π0. The vanishing cycles β0, . . . , β3 obtained in this way are isotopic to the double lifts via π1 : Fµ0
→ C∗ of

the arcs shown on Figure 13 (right).

Now that the monodromy of π0 is well-understood, it is not hard to visualize the Lagrangian spheres L′j ⊂ Σ0

lying above the arcs δj , and in particular their intersections. For example, L′0 ∩ L′1 consists of four points, one

of which is the critical point of π0 with arg x0 = 3π
4 (lying above the common end point of δ0 and δ1), while

the three others lie in the fiber above the other point p of δ0 ∩ δ1 (with arg x0 = −π
4 ), and correspond (under

a suitable parallel transport operation) to the three intersections between β1 and β2 in Fµ0
. Similarly, L′0 ∩ L′2

consists of 6 points (three above each point of δ0 ∩ δ2), and so on.

Finally, we observe that there cannot be any contributions to the Floer differential m1, for purely topological

reasons. Indeed, if we consider any two intersection points p, q ∈ L′i ∩ L′j for some pair (i, j), and any two arcs

γ ⊂ L′i and γ
′ ⊂ L′j joining p to q, then γ and γ′ are never homotopic inside Σ0, as easily seen by considering

either π0(γ) and π0(γ
′) (if π0(p) 6= π0(q)), or π1(γ) and π1(γ

′) (if π0(p) = π0(q)).

The proof of Proposition 6.1 is essentially a careful induction on successive slices and coordinate projections,

where one manages to understand the structure of the intersections between vanishing cycles by starting with a

1-dimensional slice of Σ0 and then adding one extra dimension at a time; the main difficulty resides in setting

up the induction properly and in choosing manageable notations for the many objects that appear in the proof,

rather than in the actual calculations which are essentially always the same.

The next step towards understanding the category of vanishing cycles of the Lefschetz fibration W : X → C
would be to study the moduli spaces of pseudo-holomorphic maps from a disc with three or more marked points

to Σ0 with boundary on
⋃
L′j , something which falls beyond the scope of this paper. Nonetheless, a careful

observation suggests that the main features observed in the two-dimensional case, namely the vanishing of mk

for k ≥ 3 and the exterior algebra structure underlying m2, should extend to the higher-dimensional case.
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For example, in the case of CP3, we can study m2 : Hom(L′0, L
′
1)⊗ Hom(L′1, L

′
2)→ Hom(L′0, L

′
2) by looking

carefully at Figure 13. Let α0 (resp. β0) be the morphism from L′0 to L
′
1 (resp. from L′1 to L

′
2) which corresponds

to their intersection at a critical point of π0, and let α1, α2, α3 (resp. β1, β2, β3) be the three other morphisms

between these two vanishing cycles (labelling them in a consistent way with respect to the other coordinate

projections). Equipping Σ0 with an almost-complex structure for which the projection π0 is holomorphic,

pseudo-holomorphic discs project to immersed triangular regions in C∗ with boundary on δ0 ∪ δ1 ∪ δ2; there are

three such regions (to the upper-left, to the upper-right, and to the bottom of Figure 13 left). To start with, it

is immediate from an observation of Figure 13 that m2(α0, β0) = 0. Next, by deforming the arcs δ0 and δ1 to

make them lie very close to each other near their common end point, we can shrink the upper-left region to a

very thin triangular sector, in which case exactly one pseudo-holomorphic map contributes to the composition

of α0 with each of β1, β2, β3. It is then easy to see that composition with α0 induces an isomorphism from

span(β1, β2, β3) ⊂ Hom(L′1, L
′
2) to the subspace of Hom(L′0, L

′
2) spanned by the three intersections for which

arg x0 = π
2 . Considering the upper-right triangular region delimited by δ0, δ1, δ2 on Figure 13 left, we can

conclude that the same is true for the compositions of α1, α2, α3 with β0, and arguing by symmetry we can

check that m2(α0, βi) = ±m2(αi, β0) for i = 1, 2, 3 (and, hopefully, a careful study of orientations should allow

one to conclude that the signs are all negative).

By a similar argument, we can study m2(αi, βj) for 1 ≤ i, j ≤ 3 by shrinking the lower triangular region

of Figure 13 left to a single point, which allows us to localize all the relevant intersection points and pseudo-

holomorphic discs into a single fiber of π0. The intersection pattern inside that fiber of π0 is then described by

Figure 13 right, so that things become essentially identical to the discussion carried out in the previous section

for the Lefschetz fibration mirror to CP2 (observe the similarity between Figures 13 right and 5 right). Hence,

the same argument as in the two-dimensional case shows in particular that m2(αi, βi) = 0 for 1 ≤ i ≤ 3 and

m2(αi, βj) = ±m2(αj , βi) for 1 ≤ i 6= j ≤ 3.

6.2. Non-commutative deformations of CP2. As mentioned in the introduction, in the general case one

expects the mirror to be obtained by partial (fiberwise) compactification of the Landau-Ginzburg model given by

the toric mirror ansatz. While not required in the toric Fano case considered here, this fiberwise compactification

allows for more freedom of deformation, since it enlarges H2(X,C); this sometimes makes it possible to recover

more general (non-toric) noncommutative deformations of the Fano manifold. We now illustrate this by briefly

discussing the case of CP2. We will show the following:

Proposition 6.2. Non-exact symplectic deformations of the fiberwise compactified Landau-Ginzburg model

(X̄, W̄ ) correspond to general noncommutative deformations of the projective plane.

Moreover, we expect that there is a simple relation between the cohomology class of the symplectic form on

X̄ and the noncommutative deformation parameters for CP2.

Recall that a general noncommutative projective plane is defined by a graded regular algebra which is

presented by 3 generators of degree one and 3 quadratic relations. All these noncommutative planes were

described in the papers [2, 1], and with another point of view in [12]. It was proved in [2] that isomorphism classes

of regular graded algebras of dimension 3 generated by 3 elements of degree 1 are in bijective correspondence

with isomorphism classes of regular triples T = (E, σ, L), where one of the following holds:

1) E = P2, σ is an automorphism of P2, and L = O(1);
2) E is a divisor of degree 3 in P2, L is the restriction of OP2(1), and σ is an automorphism of E such that

(σ∗L)2 ∼= L⊗ σ2∗L, σ∗L À L.
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The triples (and the algebras) of the first type are related to the ordinary commutative P2 in the sense that

the category qgr of such an algebra is equivalent to the category coh(P2), whereas the triples of the second

type are related to the nontrivial noncommutative projective planes. For example, the toric noncommutative

deformations of P2, which were discussed above, correspond to the triples with E isomorphic to a triangle (union

of three lines).

Consider now the noncommutative projective planes which correspond to triples with E isomorphic to a

smooth elliptic curve. We know that sometimes the categories qgr of two different graded algebras can be

equivalent. In particular, with this point of view any triple with smooth E is equivalent to a triple with the

same E and such that σ is a translation by a point of E (see sect. 8 of [12]). On the other hand, according to

[1](10.14), the equations defining a generic regular graded algebra, which corresponds to a triple (E, σ, L) with

E a smooth elliptic curve and σ a translation, can be put into the form

f1 = cx2 + byz + azy = 0

f2 = axz + cy2 + bzx = 0

f3 = bxy + ayx+ cz2 = 0.

This means that the DG category C for these noncommutative projective planes can be described in the

following way. It has three objects, say l0, l1, l2, and for i < j the spaces of morphisms Hom(li, lj) are 3-

dimensional, with all elements of degree (j− i). There are bases x0, y0, z0 ∈ Hom(l0, l1), x1, y1, z1 ∈ Hom(l1, l2),

x̄, ȳ, z̄ ∈ Hom(l0, l2) in which the nontrivial compositions are given by the following formulas:

m2(x0, y1) = az̄, m2(x0, z1) = bȳ, m2(x0, x1) = cx̄,

m2(y0, z1) = ax̄, m2(y0, x1) = bz̄, m2(y0, y1) = cȳ,

m2(z0, x1) = aȳ, m2(z0, y1) = bx̄, m2(z0, z1) = cz̄.

All other compositions (except those involving identity morphisms) vanish.

Recall from §4 that the mirror of CP2 is an elliptic fibration with three singular fibers. In the affine setting,

the generic fibers of W = x + y + z on X = {xyz = 1} are tori with three punctures, but it is possible

to compactify X partially into an elliptic fibration W̄ : X̄ → C whose fibers are closed curves; unlike what

happens in more complicated (non-toric) examples, this does not introduce any extra critical points.

The generic fiber of W̄ and the three vanishing cycles are as represented on Figure 14 (compare with Figure

5 right, which represents the images by πx of the same vanishing cycles; see also Figure 2 of [35]); the bold dots

represent the intersections of the fiber with the compactification divisor.

While it is easy to see that mk remains trivial for k 6= 2, the compactification modifies the product m2 in

the category Lagvc(W̄ , {γi}) by introducing an infinite number of immersed triangular regions with boundary

in L0 ∪ L1 ∪ L2. This induces a deformation of the product structure, and the uncompactified case considered

in §4 now arises as a limiting situation in which the areas of the hexagonal regions containing the intersections

with the compactification divisor tend to infinity.

For example, the product m2(x0, y1) remains a multiple of z̄, but the relevant coefficient is now a sum of

infinitely many contributions, corresponding to immersed triangles in which the edge joining x0 to y1 is an

arbitrary immersed arc between these two points inside L1. The convergence of the series
∑

i± exp(−area(Ti))
follows directly from the fact that the area grows quadratically with the number of times that the x0y1 edge

wraps around L1. Similarly, m2(y0, x1) is a multiple of z̄ as in the uncompactified case, but with a coefficient

now given by the sum of an infinite series of contributions; and similarly for m2(y0, z1) and m2(y1, z0), which

remain multiples of x̄, and for m2(z0, x1) and m2(x0, z1), which are proportional to ȳ.
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Figure 14. The vanishing cycles of the compactified mirror of CP2

The important new feature of the compactified Landau-Ginzburg model is that m2(x0, x1) is now a multiple

of x̄ (with a coefficient that may be zero or non-zero depending on the choice of the cohomology class of the

symplectic form); since there are again infinitely many immersed triangular regions with vertices x0, x1, x̄ (the

smallest two of which are embedded and easily visible on Figure 14), the relevant coefficient is the sum of an

infinite series.

Observe that the two embedded triangles are to be counted with opposite signs (the differences in orienta-

tions at the two vertices of degree 1 cancel each other, while the non-triviality of the spin structures and the

complementarity of the sides result in a total of three sign changes, see §4.6); hence, in the “symmetric” case

where the six triangular regions delimited by L0 ∪ L1 ∪ L2 have equal areas, these two contributions cancel

each other. The same is true of the other (immersed) triangles with vertices x0, x1, x̄, which arise in similarly

cancelling pairs. Hence, in the symmetric situation, we end up having m2(x0, x1) = 0 as in §4; however in the

general case m2(x0, x1) can still be a non-zero multiple of x̄. There are similar statements for m2(y0, y1) and

m2(z0, z1), which are multiples of ȳ and z̄ respectively (and also vanish in the symmetric case).

6.3. HMS for products. Let W1 : X1 → C and W2 : X2 → C be two Lefschetz fibrations, with critical points

respectively pi, 1 ≤ i ≤ r and qj , 1 ≤ j ≤ s, and associated critical values λi =W1(pi) and µj =W2(qj). Then

W = W1 +W2 : X1 × X2 → C is a Lefschetz fibration with rs critical points (pi, qj), and associated critical

values W (pi, qj) = λi + µj (we will assume that these are pairwise distinct and nonzero).

For all t ∈ C, the fiber Mt =W−1(t) ⊂ X1 ×X2 can be viewed as the total space of a fibration φt :Mt → C
given by φt(p, q) = W1(p), with fiber φ−1t (λ) = W−1

1 (λ) × W−1
2 (t − λ). The r + s critical values of φt are

λ1, . . . , λr and t − µ1, . . . , t − µs. If t varies along an arc γ joining 0 to λi + µj , the critical value t − µj of φt

converges to the critical value λi by following the arc γ − µj . Hence, the vanishing cycle Lγ ⊂ M0 associated

to the arc γ is a fibered Lagrangian sphere, mapped by φ0 to the arc γ̃ = γ − µj joining the critical values −µj
and λi of φ0.

More precisely, the fiber of φ0 above an interior point of γ̃ is symplectomorphic to the product Σ1×Σ2 of the

smooth fibers of W1 and W2, and its intersection with the vanishing cycle Lγ is a product of two Lagrangian

spheres Si × Tj ⊂ Σ1 × Σ2, where Si and Tj correspond to vanishing cycles of W1 and W2 associated to the

critical values λi and µj respectively. Above the end points of γ̃, the product Si×Tj collapses to either {pi}×Tj
(above γ̃(1) = λi) or Si × {qj} (above γ̃(0) = −µj). Denoting by ni the complex dimension of Xi, a model

for the topology of the restriction of φ0 to Lγ is given by the map φ : Sn1+n2−1 → [0, 1] defined over the unit

sphere in Rn1+n2 by (x1, . . . , xn1
, xn1+1, . . . , xn1+n2

) 7→ x21 + · · ·+ x2n1
.



MIRROR SYMMETRY FOR WEIGHTED PROJECTIVE PLANES 53

q q q q q qq
q
q
q

λ1 λi λi′ λr

−µs

−µj′

−µj

−µ1

"
"
"
"
""

³³
³³

³³
³³

³³³

¡
¡
¡
¡
¡
¡

Lij

Lij′
Li′j′

Figure 15. The vanishing cycles of W =W1 +W2 : X1 ×X2 → C

Up to a suitable isotopy we can assume that the critical values λi all have the same imaginary part, and

0 < Im(λi) ¿ Re(λ1) ¿ · · · ¿ Re(λr) (so that line segments joining the origin to λi form an ordered

collection that can be used to define Lagvc(W1)). Similarly, assume that µj all have the same real part, and

0 < Re(µj) ¿ Im(µs) ¿ · · · ¿ Im(µ1). Then there is a natural way to choose arcs γij , 1 ≤ i ≤ r, 1 ≤ j ≤ s,

joining the origin to λi + µj , with both real and imaginary parts monotonically increasing, in such a way that

the lexicographic ordering of the labels ij coincides with the clockwise ordering of the arcs γij around the origin.

The arcs γ̃ij to which the vanishing cycles Lij ⊂M0 project under φ0 are then as shown in Figure 15.

In this situation, we have the following result, which gives supporting evidence for Conjecture 1.3:

Proposition 6.3. The vanishing cycles Lij of W are in one-to-one correspondence with pairs of vanishing

cycles (Si, Tj) of W1 and W2, and

HomLagvc(W1+W2)(Lij , Li′j′) ' HomLagvc(W1)(Si, Si′)⊗HomLagvc(W2)(Tj , Tj′).

Sketch of proof. For i < i′ and j < j′, the intersections between Lij and Li′j′ localize into a single smooth

fiber of φ0, whose intersection with Lij is Si × Tj while the intersection with Li′j′ is Si′ × Tj′ (up to isotopy

in general, but by suitably modifying the fibrations W1 and W2 to make them trivial over large open subsets

and by choosing the arcs γij carefully we can make this hold strictly). Therefore, in this case intersections

points between Lij and Li′j′ correspond to pairs of intersections between Si and Si′ and between Tj and Tj′ , so

Hom(Lij , Li′j′) ' Hom(Si, Si′) ⊗ Hom(Tj , Tj′). After choosing suitable trivializations of the canonical bundles

(so that the phase of Lij at an intersection point can easily be compared with the sums of the phases of Si and

Tj), it becomes easy to check that this isomorphism is compatible with gradings.

When i = i′ and j < j′ the intersections between Lij and Lij′ lie in a singular fiber of φ0 (of the form

W−1
1 (λi) × Σ2), inside which Lij and Lij′ identify with {pi} × Sj and {pi} × Sj′ respectively (see Figure 15);

recalling that Hom(Si, Si) = C by definition, we obtain the desired formula. Similarly for Lij ∩Li′j when i < i′

and j = j′. Finally, the case i = i′ and j = j′ is trivial.

In all other cases, there are no morphisms from Lij to Li′j′ . Indeed, if either i > i′ or i = i′ and j > j′

then (i, j) follows (i′, j′) in the lexicographic ordering, so there are no morphisms from Lij to Li′j′ . The only

remaining case is when i < i′ and j > j′; in that case the triviality of Hom(Lij , Li′j′) follows from the fact

Lij ∩ Li′j′ = ∅ (because the projections γ̃ij and γ̃i′j′ are disjoint). ¤

In order to prove Conjecture 1.3, one needs to achieve a better understanding of pseudo-holomorphic discs in

M0 with boundary in
⋃
Lij . This is most easily done in the case of low-dimensional examples such as the mirror

to CP1 × CP1 (already studied in a different manner in §5.1), or more generally any situation where the fibers

are 0-dimensional, because the description then becomes purely combinatorial. Another piece of supporting

evidence is the following
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Lemma 6.4. When i < i′ < i′′ and j < j′ < j′′, the composition m2 : Hom(Lij , Li′j′) ⊗ Hom(Li′j′ , Li′′j′′) →
Hom(Lij , Li′′j′′) is expressed (up to homotopy) in terms of compositions in Lagvc(W1) and Lagvc(W2) by the

formula m2(s⊗ t, s′ ⊗ t′) = m2(s, s
′)⊗m2(t, t

′).

Sketch of proof. After deforming the fibrationsW1 andW2 and the arcs γij , γi′j′ , γi′′j′′ (hence “up to homotopy”

in the statement), we can assume that all intersections between Lij , Li′j′ and Li′′j′′ occur in a portion of M0

where the fibration φ0 is trivial. Choose an almost-complex structure which is locally a product in φ−10 (U) '
U × Σ1 × Σ2 ⊂ M0. Then every pseudo-holomorphic disc with boundary in Lij ∪ Li′j′ ∪ Li′′j′′ contributing

to m2 projects under φ0 to the same triangular region in U (the unique triangular region with boundary in

γ̃ij∪γ̃i′j′∪γ̃i′′j′′ , which we can assume to be arbitrarily small), while the projections to the factors Σ1 and Σ2 are

exactly those pseudo-holomorphic discs which contribute to m2 : Hom(Si, Si′)⊗Hom(Si′ , Si′′)→ Hom(Si, Si′′)

and m2 : Hom(Tj , Tj′)⊗Hom(Tj′ , Tj′′)→ Hom(Tj , Tj′′). ¤

Other parts of Conjecture 1.3 are also accessible to similar methods. However, the general situation is

quite subtle, partly because the definition of higher compositions in a product of two A∞-categories is more

complicated than one might think, but also because one has to deal with more complicated moduli spaces of

pseudo-holomorphic discs.
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