MIRROR SYMMETRY: LECTURE 3

DENIS AUROUX NOTES BY KARTIK VENKATRAM

Last time, we say that a deformation of (X, J) is given by

(1)
$$\{s \in \Omega^{0,1}(X, TX) | \overline{\partial}s + \frac{1}{2}[s, s] = 0\} / \text{Diff}(X)$$

To first order, these are determined by $\operatorname{Def}_1(X,J) = H^1(X,TX)$, but extending these to higher order is obstructed by elements of $H^2(X,TX)$. In the Calabi-Yau case, recall that:

Theorem 1 (Bogomolov-Tian-Todorov). For X a compact Calabi-Yau $(\Omega_X^{n,0} \cong \mathcal{O}_X)$ with $H^0(X,TX)=0$ (automorphisms are discrete), deformations of X are unobstructed.

Note that, if X is a Calabi-Yau manifold, we have a natural isomorphism $TX \cong \Omega_X^{n-1}, v \mapsto i_v \Omega$, so

(2)
$$H^{0}(X, TX) = H^{n-1,0}(X) \cong H^{0,1}$$

and similarly

(3)
$$H^{1}(X, TX) = H^{n-1,1}, H^{2}(X, TX) = H^{n-1,2}$$

1. Hodge theory

Given a Kähler metric, we have a Hodge * operator and L^2 -adjoints

(4)
$$d^* = -*d*, \overline{\partial}^* = -*\partial*$$

and Laplacians

(5)
$$\Delta = dd^* + d^*d, \overline{\square} = \overline{\partial}\overline{\partial}^* + \overline{\partial}^*\overline{\partial}$$

Every $(d/\overline{\partial})$ -cohomology class contains a unique harmonic form, and one can show that $\overline{\Box} = \frac{1}{2}\Delta$. We obtain

(6)
$$H_{dR}^{k}(X,\mathbb{C}) \cong \operatorname{Ker} \left(\Delta : \Omega^{k}(X,\mathbb{C}) \circlearrowleft\right) = \operatorname{Ker} \left(\overline{\square} : \Omega^{k} \circlearrowleft\right)$$
$$\cong \bigoplus_{p+q=k} \operatorname{Ker} \left(\overline{\square} : \Omega^{p,q} \circlearrowleft\right) \cong \bigoplus_{p+q=k} H_{\overline{\partial}}^{p,q}(X)$$

The Hodge * operator gives an isomorphism $H^{p,q} \cong H^{n-p,n-q}$. Complex conjugation gives $H^{p,q} \cong \overline{H^{q,p}}$, giving us a *Hodge diamond*

$$h^{n,n} h^{n-1,n} \cdots h^{0,n}$$

$$h^{n,n-1} h^{n-1,n-1} \cdots \vdots \vdots$$

$$\vdots \ddots \vdots \vdots \vdots$$

$$h^{n,0} \cdots h^{1,1} h^{0,1}$$

For a Calabi-Yau, we have

(8)
$$H^{p,0} \cong H^{n,n-p} = H^{n-p}_{\overline{\partial}}(X,\Omega_X^n) \cong H^{n-p}_{\overline{\partial}}(X,\mathcal{O}_X) = H^{0,n-p} \cong \overline{H^{n-p,0}}$$

Specifically, for a Calabi-Yau 3-fold with $h^{1,0}=0$, we have a reduced Hodge diamond

Mirror symmetry says that there is another Calabi-Yau manifold whose Hodge diamond is the mirror image (or 90 degree rotation) of this one.

There is another interpretation of the Kodaira-Spencer map $H^1(X,TX)\cong H^{n-1,1}$. For $\mathcal{X}=(X,J_t)_{t\in S}$ a family of complex deformations of (X,J), $c_1(K_X)=-c_1(TX)=0$ implies that $\Omega^n_{(X,J_t)}\cong \mathcal{O}_X$ under the assumption $H^1(X)=0$, so we don't have to worry about deforming outside the Calabi-Yau case. Then $\exists [\Omega_t]\in H^{n,0}_{J_t}(X)\subset H^n(X,\mathbb{C})$. How does this depend on t? Given $\frac{\partial}{\partial t}\in T_0S, \frac{\partial t}{\partial \Omega_t}\in \Omega^{n,0}\oplus \Omega^{n-1,1}$ by Griffiths transversality:

(10)
$$\alpha_t \in \Omega_{J_t}^{p,q} \implies \frac{\partial}{\partial t} \alpha_t \in \Omega^{p,q} + \Omega^{p-1,q+1} + \Omega^{p+1,q-1}$$

Since $\frac{\partial \Omega_t}{\partial t}|_{t=0}$ is d-closed $(d\Omega_t = 0)$, $(\frac{\partial \Omega_t}{\partial t}|_{t=0})^{(n-1,1)}$ is $\overline{\partial}$ -closed, while

(11)
$$\overline{\partial} (\frac{\partial \Omega_t}{\partial t}|_{t=0})^{(n-1,1)} + \overline{\partial} (\frac{\partial \Omega_t}{\partial t}|_{t=0})^{(n-1,1)} = 0$$

Thus, $\exists [(\frac{\partial \Omega_t}{\partial t}|_{t=0})^{(n-1,1)}] \in H^{n-1,1}(X)$.

For fixed Ω_0 , this is independent of the choice of Ω_t . If we rescale $f(t)\Omega_t$,

(12)
$$\frac{\partial}{\partial t}(f(t)\Omega_t) = \frac{\partial f}{\partial t}\Omega_t + f(t)\frac{\partial \Omega_t}{\partial t}$$

Taking $t \to 0$, the former term is (n,0), while for the latter, f(0) scales linearly with Ω^0 .

(13)
$$H^{n-1,1}(X) = H^1(X, \Omega_X^{n-1}) \cong H^1(X, TX)$$

and the two maps $T_0S \to H^{n-1,1}(X)$, $H^1(X,TX)$ agree. Hence, for $\theta \in H^1(X,TX)$ a first-order deformation of complex structure, $\theta \cdot \Omega \in H^1(X,\Omega_X^n \otimes TX) = H^{n-1,1}(X)$ and (the Gauss-Manin connection) $[\nabla_{\theta}\Omega]^{(n-1,1)} \in H^{n-1,1}(X)$ are the same. We can iterate this to the third-order derivative: on a Calabi-Yau three-fold, we have

(14)
$$\langle \theta_1, \theta_2, \theta_3 \rangle = \int_X \Omega \wedge (\theta_1 \cdot \theta_2 \cdot \theta_3 \cdot \Omega) = \int_X \Omega \wedge (\nabla_{\theta_1} \nabla_{\theta_2} \nabla_{\theta_3} \Omega)$$

where the latter wedge is of a (3,0) and a (0,3) form.

2. Pseudoholomorphic curves

(reference: McDuff-Salamon) Let (X^{2n}, ω) be a symplectic manifold, J a compatible almost-complex structure, $\omega(\cdot, J\cdot)$ the associated Riemannian metric. Furthermore, let (Σ, j) be a Riemann surface of genus $g, z_1, \ldots, z_k \in \Sigma$ market points. There is a well-defined moduli space $\mathcal{M}_{g,k} = \{(\Sigma, j, z_1, \ldots, z_k)\}$ modulo biholomorphisms of complex dimension 3g - 3 + k (note that $\mathcal{M}_{0,3} = \{\text{pt}\}$).

Definition 1. $u: \Sigma \to X$ is a J-holomorphic map if $J \circ du = du \circ J$, i.e. $\overline{\partial}_J u = \frac{1}{2}(du + Jduj) = 0$. For $\beta \in H_2(X, \mathbb{Z})$, we obtain an associated moduli space

(15)
$$M_{g,k}(X,J,\beta) = \{(\Sigma,j,z_1,\ldots,z_k), u : \Sigma \to X | u_*[\Sigma] = \beta, \overline{\partial}_J u = 0\} / \sim$$

where \sim is the equivalence given by ϕ below.

This space is the zero set of the section $\overline{\partial}_J$ of $\mathcal{E} \to \operatorname{Map}(\Sigma, X)_\beta \times \mathcal{M}_{g,k}$, where \mathcal{E} is the (Banach) bundle defined by $\mathcal{E}_u = W^{r,p}(\Sigma, \Omega^{0,1}_{\Sigma} \otimes u^*TX)$.

We can define a linearized operator

$$D_{\overline{\partial}}: W^{r+1,p}(\Sigma, u^*TX) \times T\mathcal{M}_{g,k} \to W^{r,p}(\Sigma, \Omega_{\Sigma}^{0,1} \otimes U^*TX)$$

(17)
$$D_{\overline{\partial}}(v,j') = \frac{1}{2}(\nabla v + J\nabla vj + (\nabla_v J) \cdot du \cdot j + J \cdot du \cdot j')$$
$$= \overline{\partial}v + \frac{1}{2}(\nabla_v J)du \cdot j + \frac{1}{2}J \cdot du \cdot j'$$

This operator is Fredholm, with real index

(18)
$$\operatorname{index}_{\mathbb{R}} D_{\overline{\partial}} := 2d = 2\langle c_1(TX), \beta \rangle + n(2 - 2g) + (6g - 6 + 2k)$$

One can ask about transversality, i.e. whether we can ensure that $D_{\overline{\partial}}$ is onto at every solution. We say that u is regular if this is true at u: if so, $\mathcal{M}_{g,k}(X,J,\beta)$ is smooth of dimension 2d.

Definition 2. We say that a map $\Sigma \to X$ is simple (or "somewhere injective") if $\exists z \in \Sigma$ s.t. $du(z) \neq 0$ and $u^{-1}(u(z)) = \{z\}$.

Note that otherwise u will factor through a covering $\Sigma \to \Sigma'$. We set $\mathcal{M}_{g,k}^*(X,J,\beta)$ to be the moduli space of such simple curves.

Theorem 2. Let $\mathcal{J}(X,\omega)$ be the set of compatible almost-complex structures on X: then

(19)

 $\mathcal{J}^{reg}(X,\beta) = \{J \in \mathcal{J}(X,\omega) | \text{ every simple } J\text{-holomorphic curve in class } \beta \text{ is regular} \}$ is a Baire subset in $\mathcal{J}(X,\omega)$, and for $J \in \mathcal{J}^{reg}(X,\beta)$, $\mathcal{M}_{g,k}^*(X,J,\beta)$ is smooth (as an orbifold, if $\mathcal{M}_{g,k}$ is an orbifold) of real dimension 2d and carries a natural orientation.

The main idea here is to view $\overline{\partial}_J u = 0$ as an equation on $\operatorname{Map}(\Sigma, X) \times \mathcal{M}_{g,k} \times \mathcal{J}(X,\omega) \ni (u,j,J)$. Then $D_{\overline{\partial}}$ is easily seen to be surjective for simple maps. We have a "universal moduli space" $\tilde{MM}^* \stackrel{\pi_J}{\to} \mathcal{J}(X,\omega)$ given by a Fredholm map, and by Sard-Smale, a generic J is a regular value of π_J . This universal moduli space is $\mathcal{M}^* = \bigsqcup_{J \in \mathcal{J}(X,\omega)} \mathcal{M}^*_{g,k}(X,J,\beta)$. For such J, $\mathcal{M}^*_{g,k}(X,J,\beta)$ is smooth of dimension 2d, and the tangent space is $\operatorname{Ker}(D_{\overline{\partial}})$. For the orientability, we need an orientation on $\operatorname{Ker}(D_{\overline{\partial}})$. If J is integrable, the $D_{\overline{\partial}}$ is \mathbb{C} -linear $(D_{\overline{\partial}} = \overline{\partial})$, so Ker is a \mathbb{C} -vector space. Moreover, $\forall J_0, J_1 \in \mathcal{J}^{reg}(X,\beta)$, \exists a (dense set of choices of) path $\{J_t\}_{t\in[0,1]}$ s.t. $\bigsqcup_{t\in[0,1]} \mathcal{M}^*_{g,k}(X,J_t,\beta)$ is a smooth oriented cobordism. We still need compactness.