MIRROR SYMMETRY: LECTURE 25

DENIS AUROUX NOTES BY KARTIK VENKATRAM

Last time, we were considering \mathbb{CP}^1 mirror to $\mathbb{C}^*, W = z + \frac{e^{-\Lambda}}{z}$ for $\Lambda = 2\pi \int_{\mathbb{CP}^1} \omega$: the latter object is a Landau-Ginzburg model, i.e. a Kähler manifold with a holomorphic function called the "superpotential". Homological mirror symmetry gave

(1)
$$D^{\pi} \operatorname{Fuk}(\mathbb{CP}^{1}) \cong H^{0} M F(W)$$
$$D^{b} \operatorname{Coh}(\mathbb{CP}^{1}) \cong D^{b} \operatorname{Fuk}(\mathbb{C}^{*}, W)$$

We stated that the Fukaya category of \mathbb{CP}^1 was a collection indexed by "charge" $\lambda \in \mathbb{C}$, and defined Fuk(\mathbb{CP}^1, λ) to be the set of weakly unobstructed Lagrangians with $m_0 = \lambda \cdot [L]$. This is an honest A_{∞} -category, as the m_0 's cancel and the Floer differential squares to zero, whereas from λ to λ' we'd have $\partial^2 = \lambda' - \lambda$. For instance, for $L \cong S^1$, (L, ∇) is weakly unobstructed, with $m_0 = W(L, \nabla) \cdot [L]$. However, HF(L, L) = 0 unless L is the equator and $hol(\nabla) = \pm id$. Then L_{\pm} has $HF \cong H^*(S^1, \mathbb{C})$ with deformed multiplicative structure, $HF^*(L, L) \cong \mathbb{C}[t]/t^2 = \pm e^{-\Lambda/2}$.

We now look at the matrix factorizations of $W - \lambda, \lambda \in \mathbb{C}$. These are $\mathbb{Z}/2\mathbb{Z}$ -graded projective modules Q over the ring of Laurent polynomials $R = \mathbb{C}[\mathbb{C}^*] \cong \mathbb{C}[z^{\pm 1}]$ equipped with $\delta \in \operatorname{End}^1(Q)$ s.t. $\delta^2 = (W - \lambda) \cdot \operatorname{id}_Q$. That is, we have maps $\delta_0 : Q_0 \to Q_1, \delta_1 : Q_1 \to Q_0$ given by matrices with entries in the space of Laurent polynomials s.t. $\delta_0 \circ \delta_1 = (W - \lambda) \cdot \operatorname{id}_{Q_1}, \delta_1 \circ \delta_0 = (W - \lambda) \cdot \operatorname{id}_{Q_0}$. Now $\operatorname{Hom}(Q, Q')$ is $\mathbb{Z}/2\mathbb{Z}$ graded, with

(2)
$$\operatorname{Hom}^{0} = \left\{ \begin{array}{c} Q_{0} \xrightarrow{\delta_{0}} Q_{1} \\ \downarrow & \downarrow \\ f_{0} \downarrow & \downarrow \\ Q'_{0} \xrightarrow{\delta_{0}} Q'_{1} \end{array} \right\}$$

This has a differential ∂ s.t. $\partial(f) = \delta' \cdot f \pm f \cdot \delta$ and $\partial^2 = 0$. We obtain a homology category $H^0MF(W - \lambda)$: hom $= H^0(\text{Hom}, \partial)$, i.e. "chain maps" up to "homotopy".

Theorem 1. $H^0(MF(W-\lambda)) = 0$, i.e. all matrix factorizations are nullhomotopic, unless λ is a critical value of W.

Warning: again, looking at homomorphisms from $MF(W-\lambda)$ to $MF(W-\lambda')$, then $\partial^2 \neq 0$, $\partial^2(f) = \partial'^2 \cdot f - f \cdot \partial^2 = (\lambda - \lambda')f$.

Example. $W = z + \frac{e^{-\lambda}}{z}$ has critical points $\pm e^{-\Lambda/2}$ with critical values $\pm 2e^{-\Lambda/2}$. Then

(3)
$$W \pm 2e^{-\Lambda/2} = z \pm 2e^{-\Lambda/2} + \frac{e^{-\lambda}}{z} = (z \pm e^{-\Lambda/2})(1 \pm \frac{e^{-\Lambda/2}}{z})$$
$$Q_{\pm} = \{ \mathbb{C}[z^{\pm 1}] \xrightarrow[1+e^{-\Lambda/2}z^{-1}] \}$$

Then

$$\operatorname{End}_{H^{0}MF}(Q_{\pm}) = \{ R \xrightarrow{R} \} / \operatorname{homotopy}$$

$$\downarrow^{f} \qquad \downarrow^{f}$$

$$R \xrightarrow{R} R$$

is multiplication by $f \in \mathbb{C}[z^{\pm 1}]$. The maps ∂ sends

and similarly on the other side, so

(6)
$$\operatorname{End}(Q_{\pm}) = \mathbb{C}[z^{\pm 1}]/(z \pm e^{-\Lambda/2}, 1 + \pm e^{-\Lambda/2}z^{-1}) \cong (\mathbb{C}[z^{\pm 1}]/z \pm e^{-\Lambda/2}) \cong \mathbb{C}$$

Similarly $\operatorname{Hom}_{H^0MF}(Q_{\pm}, Q_{\pm}[1]) \cong \mathbb{C}$.

Indeed, in the case of the two maps z - c, $1 - cz^{-1}$, we take vertical maps z, 1, so

(7)
$$R \xrightarrow{z-c} R$$

$$z \Big| \begin{array}{c} 1-cz^{-1} \\ 1-cz^{-1} \\ 1-cz^{-1} \\ R \xrightarrow{z-c} R \end{array}$$

giving us $\mathbb{C}[z^{\pm 1}]/\langle z-c\rangle$.

Next, $D^b\mathrm{Coh}(\mathbb{CP}^1)$ is generated by $\mathcal{O}(-1)$ and \mathcal{O} , i.e. the smallest full subcategory containing $\mathcal{O}, \mathcal{O}(-1)$ and closed under shifts and cones contains all of D^b . More generally, via Beilinson we have that

(8)
$$D^{b}\operatorname{Coh}(\mathbb{CP}^{n}) = \langle \mathcal{O}(-n), \dots, \mathcal{O}(-1), \mathcal{O} \rangle$$

The idea is the the diagonal $\Delta \subset \mathbb{CP}^n \times \mathbb{CP}^n$ is the (transverse) zero set of $s = \sum_{i=0}^n \frac{\partial}{\partial x_i} \otimes y_i$, which is a section of $E = T(-1) \boxtimes \mathcal{O}(1) = \pi_1^*(T\mathbb{CP}^n \otimes \mathbb{CP}^n)$

 $\mathcal{O}(-1)$) $\otimes \pi_2^* \mathcal{O}(1)$. Recall that $T\mathbb{CP}^n$ is spanned by the vector fields $x_i \frac{\partial}{\partial x_i}$ on \mathbb{C}^{n+1} under the relation $\sum_{i=0}^n x_i \frac{\partial}{\partial x_i} = 0$. Taking the Koszul resolution

(9)
$$0 \to E^* = \Omega^1(1) \boxtimes \mathcal{O}(-1) \to \mathcal{O} \boxtimes \mathcal{O} \to \mathcal{O}_{\Delta} \to 0$$

in $D^b\mathrm{Coh}(\mathbb{P}^1\times\mathbb{P}^1)$. On the other hand, $\mathcal{E}\in D^b\mathrm{Coh}(X\times Y)$ gives $\phi^{\mathcal{E}}:D^b(\mathrm{Coh}(X)\to D^b\mathrm{Coh}(Y), \mathcal{F}\mapsto R\pi_{2*}(L\pi_1^*\mathcal{F}\overset{L}{\otimes}\mathcal{E})$. Exactness implies that $\phi^{\mathcal{O}_{\Delta}}(\mathcal{F})\cong \mathcal{F}$ sits in an exact triangle with

(10)
$$\phi^{\Omega^1 \boxtimes \mathcal{O}(-1)}(\mathcal{F}) \cong R\Gamma(\mathcal{F} \otimes \Omega^1(1)) \otimes_{\mathbb{C}} \mathcal{O}(-1)$$
$$\phi^{\mathcal{O} \boxtimes \mathcal{O}}(\mathcal{F}) \cong R\Gamma(\mathcal{F}) \otimes_{\mathbb{C}} \mathcal{O}$$

which completes the proof.

The algebra of the exceptional collection $\langle \mathcal{O}(-1), \mathcal{O} \rangle$ is given by

(11)
$$\mathcal{A} = \operatorname{End}^*(\mathcal{O}(-1) \oplus \mathcal{O})$$

and $D^B \text{Coh}(\mathbb{CP}^1)$ is isomorphic to the derived category of finitely-generated A-modules.

Finally, the Fukaya category of $(\mathbb{C}^*, W = z + \frac{e^{-\Lambda}}{2})$ is the category whose objects are admissible Lagrangians with flat connections, i.e. L is a (possibly noncompact) Lagrangian submanifold with $W|_L$ proper, $W|_L \in \mathbb{R}_+$ outside a compact subset. We can perturb such L: for $a \in \mathbb{R}$, let $L^{(a)}$ be Hamiltonian isotopic to L, $W(L^{(a)}) \in \mathbb{R}_+ + ia$ near ∞ . In good cases, it will be the Hamiltonian flow of $X_{\text{Re}}(W) = \nabla \text{Im } W$. Then $\text{Hom}(L, L') = CF^*(L^{(a)}, L'^{(a')})$ for a > a' (the Floer differential is well-defined), and we obtain $m_k, k \geq 2$ similarly, perturbing the Lagrangians so they are in decreasing order of Im (W).

Example. Consider $L_0 = \mathbb{R}_+$, $L_{-1} =$ an arc joining 0 to $+\infty$ and rotating once clockwise around the origin. Then $e^{-\Lambda/2} \in L_0, -e^{-\Lambda/2} \in L_{-1}$, so under $W = z + \frac{e^{-\Lambda}}{z}$, we have $W(L_0)$ being the interval $[2e^{-\Lambda/2}, +\infty)$ on the positive real axis, while $W(L_{-1})$ is an arc that joins $-2e^{-\Lambda/2}$ to $+\infty$ in the lower half plane. Furthermore, $\text{hom}(L_0, L_0) \cong \mathbb{C} \cdot e, e = \text{id}_{L_0}$, and same for L_{-1} , while $\text{hom}(L_0, L_{-1}) = 0$ and $\text{hom}(L_{-1}, L_0) = V$ has dimension 2. Then $\text{Fuk}(\mathbb{C}^*, W)$ is generated by L_{-1}, L_0 (Seidel)

Similarly, one can obtain homological mirror symmetry for toric Fano manifolds: see M. Abouzaid.