MIRROR SYMMETRY: LECTURE 24

DENIS AUROUX NOTES BY KARTIK VENKATRAM

0.1. General Approach to Special Lagrangian Fibrations. The idea is to degenerate X to a union of toric varieties, build a degenerate fibration there, and try to smooth it: the approach is due to Haase-Zharkov, WD Ruan, Gross-Siebert, etc. This is a special type of LCSL. We first sketch this in the K3 case: as last time,

(1)
$$X_{\lambda} = \{ P_{\lambda} = x_0 x_1 x_2 x_3 + \lambda P_4(x_0 : \dots : x_3) = 0 \} \subset \mathbb{CP}^3$$

with $\omega_{\lambda} = \omega_{\mathbb{CP}^3}|_{X_{\lambda}}$, $\Omega_{\lambda} = \operatorname{res}_{X_{\lambda}}(\frac{dx_1dx_2dx_3}{P_{\lambda}})$. As $\lambda \to 0$, this degenerates to X_0 , a union of $4 \mathbb{CP}^2$ s, with ω_0 the standard form on each component and $\Omega_0 = \prod \frac{dx_i}{x_i}$. Now, we find that $\{|x_i| = \text{constants}\}$ are special Lagrangian (looking at $T^2 \subset \mathbb{CP}^2$), but they degenerate to S^1 at the edges and points at the vertices.

We would like to smooth this for $\lambda \neq 0$ small. The model in dimension 1 is as follows: we smooth $\{xy=0\} \subset \mathbb{C}^2$ to $\{xy=\lambda\}$, and $\Omega = \frac{dx}{x} = -\frac{dy}{y}$ gives that |x| = const, |y| = const are special Lagrangian tori. In dimension one higher, we model along the edge (|z| = const gives S_z^1 times this model) except that we perturb xy=0 to $xy+\lambda P_4(z)=0$. The four roots of P_4 give 4 singularities of the T^2 fibration on each edge of the torus, giving S^2 an affine structure on $S^2 \setminus \{24 \text{ points}\}$. This same procedure holds in greater generality, and gives affine structures and a way of building a candidate mirror (Gross-Siebert). However, it is not clear if the affine manifold built this way is the base of a special Lagrangian fibration (probably not, according to [Joyce]).

0.2. Landau-Ginzburg models and non-Calabi Yau manifolds. Our motivating example is the mirror symmetry between \mathbb{CP}^1 and $(\mathbb{C}^*, W = z + \frac{1}{z})$. A Landau-Ginzburg model is a noncompact Kähler manifold and a holomorphic function W (the "superpotential"), which measures the obstruction to being Calabi-Yau and affects the geometric interpretation of mirror symmetry. The general idea is that the geometry of X corresponds to the geometry of the critical points of W in X^\vee .

Returning to our example, we start with \mathbb{C}^* with any ω , $\Omega = \frac{dz}{z}$ (an open Calabi Yau): we have a special Lagrangian fibration by circles $S^1(r) = \{|z| = r\}$ with base \mathbb{R} . Dualizing gives back \mathbb{C}^* , and mirror symmetry works well as in SYZ (e.g. $HF(L_p, L_p) \cong H^*(S^1, \mathbb{C}) \cong \operatorname{Ext}^*(\mathcal{O}_p, \mathcal{O}_p)$). However, we need to

incorporate the noncompact Lagrangians [Seidel's "wrapped Fukaya category": we perturb by a rotation at ∞ , obtaining $HW^*(L_0, L_0) \cong \mathbb{C}[t^{\pm 1}] \cong \text{Hom}(\mathcal{O}, \mathcal{O})$ (holomorphic functions over \mathbb{C}^*)].

Now we look at $\mathbb{CP}^1 = \mathbb{C}^* \cup \{0, \infty\}$, with standard ω , $\Omega = \frac{dz}{z}$ (with poles at 0 and ∞). We can still consider a family of special Lagrangian circles, but typically $HF^*(L,L) = 0$ gives the zero object in the bounded derived Fukaya category. Furthermore, the Floer homology is obstructed, as the circles bound disks: recall that, when L, L' bound disks, ∂ on CF(L, L') squares to $\partial^2(a) = m'_0 \cdot a - a \cdot m_0$,

(2)
$$m_0 = \sum_{\beta \in \pi_2(X,L)} \operatorname{ev}_*[\overline{\mathcal{M}}_1(X,L;J,\beta)] T^{\omega(\beta)} \operatorname{hol}_{\nabla}(\partial \beta) \in CF(L,L)$$

These features of Floer homology are encoded in the superpotential, namely if $X = \mathbb{CP}^1$ is a Kähler manifold, $D = \{0, \infty\}$ the anticanonical divisor (so $s_D \in H^0(K_X^{-1})$), $\Omega = s_D^{-1} \in H^0(X \setminus D, K_X)$ where $\Omega = \frac{dz}{z}$ on \mathbb{C}^* , then

(3)
$$M = \{(L, \nabla) | L \text{ special Lagr. torus in } X \setminus D, \nabla \text{ flat } U(1) - \text{connection} \}$$

is the SYZ mirror to the almost-Calabi-Yau manifold $X \setminus D$. For $L \subset X \setminus D$ special Lagrangian, $\beta \in \pi_2(X, L)$ has Maslov index $\mu(\beta) = 2(\beta \cdot D)$. Note that s_D gives a trivialization of det (TM) away from D. Now, the expected dimension of $\overline{\mathcal{M}}(x, L, J, \beta) = n - 3 + \mu(\beta)$: in our case, the positivity of the intersection implies that $\mu(\beta) \geq 0$ for holomorphic disks.

Assume that there do not exist nonconstant $\mu = 0$ holomorphic disks in (X, L), i.e all disks hit D. This is ok for \mathbb{CP}^1 , as the maximum principle implies that there are no disks in $(\mathbb{C}^*, S^1(r))$. Assume further that $\mu = 2$ disks (which hit D once) are regular, which is also ok for \mathbb{CP}^1 . These two assumptions are also ok for toric Fano manifolds, e.g. products of \mathbb{CP}^n s. Then $\mu = 2$ moduli spaces are compact (there is no bubbling of disks) of dimension n-1. We can define $n_{\beta} = \deg (\operatorname{ev}_{0*}[\overline{\mathcal{M}}_1(\beta)])$ to be the number of holomorphic disks in the class β where the boundary contains a generic point in L.

Definition 1.

(4)
$$\omega(L, \nabla) = \sum_{\substack{\beta \in \pi_2(X, L) \\ \mu(\beta) = 2}} n_{\beta} z_{\beta}(L, \nabla)$$

where $z_{\beta} = e^{-2\pi \int_{\beta} \omega} \operatorname{hol}_{\partial\beta}(\nabla)$.

In our example, the Lagrangian L bounds two $\mu = 2$ disks D and D' centered at $0, \infty$ respectively: D contributes z while D' contributes z', and the two are related by

(5)
$$[D] + [D'] = [\mathbb{CP}^1] \implies zz' = e^{-2\pi \int_{\mathbb{CP}^1} \omega} = e^{-\Lambda}$$

Hence
$$W = z + z' = z + \frac{e^{-\Lambda}}{z}$$
.

Homological mirror symmetry provides two isomorphisms

(6)
$$D^{\pi}\operatorname{Fuk}(\mathbb{CP}^{1}) \cong H^{0}MF(W)$$
$$D^{b}\operatorname{Coh}(\mathbb{CP}^{1}) \cong D^{b}\operatorname{Fuk}(\mathbb{C}^{*}, W)$$

with matrix factorizations and "Fukaya-Seidel" category respectively. The first one explains our construction of the mirror. The Fukaya category is actually a collection indexed by "charge" $\lambda \in \mathbb{C}$, and Fuk (\mathbb{CP}^1, λ) is the set of weakly unobstructed Lagrangians with $m_0 = \lambda \cdot [L]$. This is an honest A_{∞} -category, as the m_0 's cancel and the Floer differential squares to zero, whereas from λ to λ' we'd have $\partial^2 = \lambda' - \lambda$. For instance, for $L \cong S^1$, (L, ∇) is weakly unobstructed, with $m_0 = W(L, \nabla) \cdot [L]$. However, HF(L, L) = 0 unless L is the equator and $hol(\nabla) = \pm id$. For $p \in L$,

(7)
$$\partial([p]) = z \cdot \text{ev}_{0*}([\mathcal{M}_2(L, [D])] \cap \text{ev}_1^{-1}(p)) + z' \cdot \text{ev}_{0*}([\mathcal{M}_2(L, [D'])] \cap \text{ev}_1^{-1}(p)) = z \cdot [L] - z' \cdot [L]$$

Hence the unit [L] is in the image of ∂ unless $z = \frac{e^{-\Lambda}}{z}$, i.e. $z = \pm e^{-\Lambda/2}$, i.e. L is the equator. In this case, the contributions of pairs of symmetric disks cancel exactly, and $HF^*(L,L) \cong H^*(S^1;\mathbb{C})$ as a $\mathbb{Z}/2\mathbb{Z}$ -graded vector space. However, the product structure is deformed, as $m_2([p],[p]) = \pm e^{\Lambda/2}[1]$, i.e. multiplicatively $HF^*(L,L) \cong \mathbb{C}[t]/t^2 = \pm e^{-\Lambda/2}$.