MIRROR SYMMETRY: LECTURE 17

DENIS AUROUX NOTES BY KARTIK VENKATRAM

1. Coherent Sheaves on a Complex Manifold (contd.)

We now recall the following definitions from category theory.

Definition 1. An additive category is one in which $\operatorname{Hom}(A, B)$ are abelian groups, composition is distributive, and there is a direct sum \oplus and a zero object 0. An abelian category is an additive category s.t. every morphism has a kernel and cokernel, e.g. a kernel of $f: A \to B$ is a morphism $K \to A$ s.t. $g: C \to A$ factors through K uniquely iff $f \circ g = 0$.

One can define complexes in an additive category, but one needs to be in an abelian category to have notions of exact sequences and cohomology. Recall that, given chain complexes C_* , D_* , a chain map $f: C_* \to D_*$ is a collection of maps $f_iC_i \to D_i$ commuting with δ . Given two such maps $f = \{f_i\}$, $g = \{g_i\}$, we call them homotopic if there is a map $h: A \to B[-1]$ (B shifted down by 1) s.t. $f - b = d_B h + h d_A$, i.e.

$$(1) \qquad A_{i-1} \xrightarrow{d_{i-1}} A_i \xrightarrow{d_i} A_{i+1} A_i \xrightarrow{d_{i+1}} \cdots$$

$$f_{i-1} \downarrow g_{i-1} \xrightarrow{h_i} f_i \downarrow g_i \xrightarrow{h_i} f_{i+1} \downarrow g_{i+1}$$

$$\cdots \longrightarrow B_{i-1} \xrightarrow{d_{i-1}} B_i \xrightarrow{d_i} B_{i+1} \xrightarrow{d_{i+1}} \cdots$$

A chain map is a quasi-isomorphism if the induced maps on cohomology are isomorphisms. This is stronger than $H^*(C_*) \cong H^*(D_*)$. For \mathcal{A} an abelian category, the category of bounded chain complexes is the differential graded category whose objects are bounded chain complexes in \mathcal{A} and whose morphisms are "pre-homomorphisms" of complexes $\operatorname{Hom}^k(A_*, B_*) = \bigoplus_i \operatorname{Hom}_{\mathcal{A}}(A_i, B_{i+k})$: it is equipped with a differential δ where

(2)
$$f \in Hom^k(A_*, B_*) \implies \delta(f) = d_B f + (-1)^{k+1} f d_A \in Hom^{k+1}(A_*, B_*)$$

Chain maps are precisely the elements of Ker (δ : Hom⁰ \rightarrow Hom¹), and the nullhomotopic maps are elements of im (δ : Hom⁻¹ \rightarrow Hom⁰), so H^0 Hom(A, B) gives the space of chain maps up to homotopy.

Definition 2. For \mathcal{A} an abelian category, the bounded derived category $D^b(\mathcal{A})$ is the triangulated category whose objects are bounded chain complexes in \mathcal{A} and

whose morphisms are given by chain maps up to homotopy localizing w.r.t. quasi-isomorphisms. That is, quasi-isomorphisms are formally inverted; for any quasi-isomorphism s, we add a morphism s^{-1} . More precisely, $\operatorname{Hom}_{D^b(\mathcal{A})}(A_*, B_*) = \{A \stackrel{s}{\leftarrow} A' \stackrel{f}{\rightarrow} B\}/\sim \text{where s is a quasi-isomorphism, f is a chain map, and } \sim \text{is homotopy equivalence. We similarly define the categories } D^+(\mathcal{A}), D^-(\mathcal{A}) \text{ of chain complexes bounded above/below.}$

To explain the notion of triangulated category, recall the following:

• In the category of topological spaces (or simplicial complexes), there are no kernels and cokernels. Given a map f, however, the mapping cone $C_f = (X \times [0,1]) \sqcup Y/(x,0) \sim (x',0), (x,1) \sim f(x)$ acts as both simultaneously. There are natural maps $i: Y \to C_f$ (inclusion) and $q: C_f \to \Sigma X$ (collapsing Y), and we obtain a sequence of topological spaces

(3)
$$X \xrightarrow{f} Y \xrightarrow{i} C_f \xrightarrow{q} \Sigma X \to \cdots$$

with compositions null-homotopic. This gives a long exact sequence of

$$(4) \quad H_i(X) \to H_i(Y) \to H_i(C_f) \to H_i(\Sigma X) = H_{i-1}(X) \to H_i(\Sigma Y) = H_{i-1}(Y)$$

- If X, Y are simplicial complexes, f a simplicial map, C_f defined analogously is a simplicial complex, with i-cells given by cones on (i-1)-cells of X and i-cells of Y. The boundary map is given by the matrix $\begin{pmatrix} \partial_X & 0 \\ f & \partial_Y \end{pmatrix}$.
- If A^* and B^* are complexes, f a chain map, we define $C_f = A[1] \oplus B$, i.e. $C_f^i = A^{i+1} \oplus B^i$. The boundary map is $\delta = \begin{pmatrix} \delta_A[1] & 0 \\ f & \delta_B \end{pmatrix}$. Note that, if A, B are single objects, $\operatorname{Cone}(f:A \to B)$ is just $\{0 \to A \xrightarrow{f} B \to 0\}$. We have natural chain maps $B^* \xrightarrow{i} C_f^*$ (subcomplex) and $C_f^* \xrightarrow{q} A^*[1]$ (quotient complex). As before, $A^*[1]$ is quasi-isomorphic to $\operatorname{Cone}(i:B^* \to C_f^*)$.
- Finally, in the derived category, the inversion of quasi-isomorphisms gives us *exact triangles*

with

(6)
$$H^i(A) \to H^i(B) \to H^i(C) \to H^{i+1}(A) \to \cdots$$

Definition 3. A triangulated category is an additive category with a shift functor [1] and a set of distinguished triangles satisfying various axioms:

- $\forall X, X \stackrel{\mathrm{id}}{\to} X \to 0 \to X[1]$ is distinguished,
- $\forall X \to Y$, there is a distinguished triangle $X \xrightarrow{u} Y \to Z \to X[1]$ (Z is called the mapping cone of f).
- The rotation of any distinguished triangle is distinguished, i.e. for $X \to Y \to Z \to X[1]$ distinguised, $Y \to Z \to X[1] \to Y[1]$ and $Z \to X[1] \to Y[1] \to Z[1]$ are distinguished.
- Given a square

$$(7) \qquad X \xrightarrow{f} Y \\ \downarrow \qquad \downarrow \\ X' \xrightarrow{f'} Y$$

there is a map between the mapping cones of f, f' that makes everything commute in the induced map of distinguished triangles

(8)
$$X \longrightarrow Y \longrightarrow Z \longrightarrow X[1]$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$X' \longrightarrow Y' \longrightarrow Z' \longrightarrow X'[1]$$

• Given a pair of maps $X \xrightarrow{u} Y \xrightarrow{v} Z$, there are maps between the mapping cones $C_u, C_v, C_{v \circ u}$ of u, v, and $v \circ u$ that make every commute in the induced maps of distinguished triangles.

- 1.1. **Derived functors.** Let $F : \mathcal{A} \to \mathcal{B}$ be a left exact functor between abelian categories. $\mathcal{R} \subset \mathcal{A}$ is called an *adapted class of objects* for F if
 - \bullet \mathcal{R} is stable under direct sums,
 - for C^* an acyclic complex of objects in \mathcal{R} , $F(C^*)$ is acyclic, and
 - $\forall A \in \mathcal{A}, \exists R \in \mathcal{R} \text{ s.t. } 0 \to A \xrightarrow{i} R.$

For instance, the set of injective objects is such an adapted class. Let $K^+(\mathcal{R})$ be the homotopy category of complexes bounded below of objects in \mathcal{R} . RF gives a composition $D^+(\mathcal{A}) \to K^+(\mathcal{R}) \xrightarrow{F} D^+(\mathcal{B})$, where the first map is induced by resolution by objects of R. The map $D^+(\mathcal{A}) \to D^+(\mathcal{B})$ is exact, i.e. it maps exact triangles to exact triangles, and $R^iF = H^i(RF)$.

1.2. **Extensions.** Let $A, B \in \mathcal{A} \hookrightarrow D^b(\mathcal{A})$ be single object complexes concentrated in degree 0, so B[k] is conentrated in degree -k.

Proposition 1. $\operatorname{Hom}_{D^b(\mathcal{A})}(A, B[k]) = \operatorname{Ext}_{\mathcal{A}}^k(A, B).$

We can use this to define a product $\operatorname{Ext}_{\mathcal{A}}^k(A,B) \otimes \operatorname{Ext}_{\mathcal{A}}^\ell(B,C) \to \operatorname{Ext}_{\mathcal{A}}^{k+\ell}(A,C)$ as a composition $A \to B[k] \to C[k+\ell]$ in $D^b(\mathcal{A})$.

Example. For k = 1, we have

There are no chain maps, but we can invert quasi-isomorphisms. If we have an extension $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ in \mathcal{A} , we have chain maps

$$0 \longrightarrow 0 \longrightarrow C \longrightarrow 0$$

$$0 \longrightarrow A \xrightarrow{g \uparrow} B \longrightarrow 0$$

$$\downarrow id \downarrow$$

$$0 \longrightarrow A \longrightarrow 0 \longrightarrow 0$$

giving an element in $\operatorname{Hom}_{D^b(\mathcal{A})}(C, A[1]) = \operatorname{Ext}^1(C, A)$.

There are two ways to understand the above proposition. First, if \mathcal{A} has enough injectives, take a resolution of B by a complex $I^0 \to I^1 \to \cdots$ quasi-isomorphic to B: the chain maps from A to I^* are, up to homotopy, isomorphic to $H^k(\operatorname{Hom}(A,I^*)) \cong \operatorname{Ext}^k(A,B)$. Second, we can check the definition of a derived functor. Given a short exact sequence $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ in \mathcal{A} , we get an exact triangle $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{w} A[1]$ quasi-isomorphic to a distinguished triangle with $\operatorname{Cone}(f)$.

Proposition 2. For an exact triangle $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} A[1]$ and an object E, we have long exact sequences

(12)

$$\cdots \to \operatorname{Hom}(E,A[i]) \xrightarrow{f_*} \operatorname{Hom}(E,B[i]) \xrightarrow{g_*} \operatorname{Hom}(E,C[i]) \xrightarrow{h_*} \operatorname{Hom}(E,A[i+1]) \to \cdots$$

$$\cdots \to \operatorname{Hom}(A[i+1], E) \xrightarrow{h^*} \operatorname{Hom}(C[i], E) \xrightarrow{g^*} \operatorname{Hom}(B[i], E) \xrightarrow{f^*} \operatorname{Hom}(A[i], E) \to \cdots$$