MIRROR SYMMETRY: LECTURE 15 ## DENIS AUROUX NOTES BY KARTIK VENKATRAM ## 1. Lagrangian Floer Homology (contd) Recall first our approaches to $CF^*(L,L)$ with the A_{∞} algebraic structure: - (1) Hamiltonian perturbations $CF^*(L,L) = \Lambda^{|L \cap \phi_H(L)|}$ - (2) FOOO: $CF^*(L, L) = C_*(L, \Lambda)$ the space of "chains" on L. We have evaluation maps $\operatorname{ev}_i : \overline{\mathcal{M}}_{0,k+1}(M, L; J, \beta) \to L$, giving multiplication maps $$m_k(C_k,\ldots,C_1) = \sum_{\beta \in \pi_2(X,L)} T^{\omega(\beta)}(\operatorname{ev}_0)_*([\overline{\mathcal{M}}_{0,k+1}(M,L;J,\beta)] \cap ev_1^*C_1 \cap \cdots \cap ev_k^*C_k)$$ - (3) Cornea-Lalonde approach: "clusters". Pick a Morse function $f: L \to \mathbb{R}$, and set $CF^*(L, L) = \Lambda^{\operatorname{crit}(f)}$. m_k counts "clusters" of J-holomorphic disks and gradient flowlines. - 1.1. **Disks and Obstruction.** We've seen that, if L_0 or L_1 bound holomorphic disks, then $\partial^2 \neq 0$ (the moduli space of index 2 strips has disk bubbling on the boundaries in addition to strips). Counting the contribution of disk bubbles gives $m_0 \in CF^*(L, L)$. In FOOO theory, $m_0 = \sum_{\beta \neq 0} \operatorname{ev}_*[\overline{\mathcal{M}}_{0,1}(M, L; J, \beta)] \cdot T^{\omega(\beta)}$. A bubble on the boundary of the disk on L_1 is $m_2(m_0, p)$, for $p \in CF^*(L_0, L_1)$, $m_0 \in CF^*(L_1, L_1)$. Hence m_0 is the obstruction to $\partial^2 = 0$. More generally, A_{∞} -equations still hold if we include the terms $m_k(\cdots, m_0, \cdots)$, which we can interpret as disks with k+1 marked points developing disk bubbles on the boundary. This is called a "curved A_{∞} -category". We say that L is unobstructed if $m_0 = 0$, and weakly unobstructed if $m_0 \in \Lambda.1_L$, where 1_L is the fundamental chain [L]. This implies centrality, and $m_1^2 = 0$ on CF(L, L). Weakly unobstructed L's with a given "charge" form an honest A_{∞} -category. In FOOO, one tries to cancel the obstruction by a formal deformation $b \in CF^1(L, L)$. For $\nabla = d + b$ on $CF^*(L, L)$, write (1) $$m_k^b(C_k,\ldots,C_1) = \sum m_{k+\ell}(b\ldots b,c_k,b\ldots b,\ldots,b\ldots b,c_1,b\cdots b)$$ This is still a curved A_{∞} -algebra, and we look for b, s.t. $m_0^b = m_0 + m_1(b) + m_2(b,b) + \cdots = 0$. Such a b is called a "bounding cochain". One can similarly define weakly bounding cochains, and define our obmjects to be equivalence classes of pairs (L,b) for b a weakly bounding cochain. - 1.2. Coherent Sheaves on a Complex Manifold. Let X be a complex manifold, \mathcal{O}_X the sheaf of holomorphic functions on X. Recall that a coherent sheaf \mathcal{F} is a sheaf of \mathcal{O}_X -modules s.t. - \mathcal{F} is of finite type, i.e. there is an open cover by affines U_i s.t. \mathcal{F}_{U_i} is generated by a finite number of sections, i.e. \exists surjective maps $\mathcal{O}_X|_{U_i}^{\oplus n} \to \mathcal{F}|_{U_i}$. - For all $U \subset X$ open, $\phi : \mathcal{O}_X|_U^{\oplus n} \to \mathcal{F}|_U$ a homomorphism of \mathcal{O}_X -module, Ker ϕ is of finite type. If X is nice enough, \mathcal{F} has finite presentation, i.e. \exists an open cover s.t. there is an exact sequence (2) $$\mathcal{O}_X^{\oplus r}|_U \to \mathcal{O}_X^{\oplus n}|_U \to \mathcal{F}|_U \to 0$$ i.e. a coherent sheaf is the cokernel of a morphism of vector bundles. Coherent sheaves form an abelian category, i.e. they contain kernels and cokernels. Example. Any vector bundle E can be thought of as a locally free sheaf of holomorphic sections. For D a hypersurface defined by s = 0 for s a section of some line bundle \mathcal{L} , we have a short exact sequence $$(3) 0 \to \mathcal{L}^{-1} \stackrel{s}{\to} \mathcal{O}_X \to \mathcal{O}_D \to 0$$ For $Z \subset X$ a codimension r subvariety defined transversely as $s^{-1}(0)$, for s a section of a rank r vector bundle \mathcal{E} , we have a Koszul resolution $$(4) 0 \to \bigwedge^r \mathcal{E}^* \stackrel{s}{\to} \bigwedge^{r-1} \mathcal{E}^* \stackrel{s}{\to} \cdots \stackrel{s}{\to} \mathcal{E}^* \stackrel{s}{\to} \mathcal{O}_X \to \mathcal{O}_Z \to 0$$ For X smooth (proper?), coherent sheaves always have a finite resolution by vector bundles. The category of sheaves has both an internal \mathcal{H} (which is a sheaf) and an external Hom (just a group, and in fact the global sections for the former). A functor $F: \mathcal{C} \to \mathcal{C}'$ is left exact if $0 \to A \to B \to C \to 0 \implies 0 \to F(A) \to F(B) \to F(C)$. If the category \mathcal{C} has enough injectives (objects such that $\operatorname{Hom}_{\mathcal{C}}(-,I)$ is exact), there are right-derived functors R^iF s.t. $$(5) 0 \to F(A) \to F(B) \to F(C) \to R^1 F(A) \to R^1 F(B) \to R^1 F(C) \to \cdots$$ To compute $R^iF(A)$, resolve A by injective objects as $0 \to A \to I^0 \to I^1 \to I^2 \to \cdots$, we get a complex $0 \to F(I^0) \to F(I^1) \to F(I^2) \to \cdots$. Taking cohomology gives $R^iF(A) = \operatorname{Ker}(F(I^i) \to F(I^{i+1}))/\operatorname{im}(F(I^{i-1}) \to F(I^i))$. Note that $R^0F(A) = F(A)$. Example. Sheaf cohomology arises as the right derived functor of the global section functor, and can be computed by acyclic sheaves (e.g. flasque sheaves).