Gromov-Witten Invariants and Schubert Polynomials

Alexander Postnikov

based on a joint paper with
Sergey Fomin and Sergei Gelfand
"Quantum Schubert polynomials"

Available as AMS Electronic Preprint \#199605-14-008

1. Flag Manifold

$F l_{n}=F l\left(\mathbb{C}^{n}\right)$ flag manifold. Points are

$$
U_{1} \subset U_{2} \subset \cdots \subset U_{n}=\mathbb{C}^{n}, \quad \operatorname{dim} U_{i}=i
$$

Homomorphism $\alpha: \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathrm{H}^{*}\left(F l_{n}, \mathbb{Z}\right)$

$$
\alpha: x_{i} \longmapsto-c_{1}\left(\mathcal{E}_{i} / \mathcal{E}_{i-1}\right) \in \mathrm{H}^{2}\left(F l_{n}\right),
$$

where $0=\mathcal{E}_{0} \subset \mathcal{E}_{1} \subset \cdots \subset \mathcal{E}_{n-1} \subset \mathcal{E}_{n}=\mathbb{C}^{n}$ are tautological vector bundles on $F l_{n}$ and c_{1} is the first Chern class.

Theorem [A. Borel, 1953] The map α induces the isomorphism

$$
\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right] / I_{n} \xrightarrow{\sim} \mathrm{H}^{*}\left(F l_{n}, \mathbb{Z}\right)
$$

where $I_{n}=\left(e_{1}, \ldots, e_{n}\right)$ is the ideal generated by elementary symmetric polynomials in x_{1}, \ldots, x_{n}.

Schubert Classes

Another description of $\mathrm{H}^{*}\left(F l_{n}\right)$ is based on a decomposition of $F l_{n}$ into Schubert cells, labelled by permutations $w \in S_{n}$

Fix a flag $V_{1} \subset V_{2} \subset \cdots \subset V_{n}=\mathbb{C}^{n}$.
The Schubert variety Ω_{w} is the set of all flags $U . \in F l_{n}$ such that for all $p, q \in\{1, \ldots, n\}$
$\operatorname{dim}\left(U_{p} \cap V_{q}\right) \geq \#\{1 \leq i \leq p, w(i) \geq n+1-q\}$
Then $\operatorname{codim}_{\mathbb{R}} \Omega_{w}=2 l(w)$, where $l(w)$ is the length of w.

Schubert class:

$$
\sigma_{w}=\left[\Omega_{w}\right] \in \mathrm{H}_{n(n-1)-2 l}\left(F l_{n}\right) \simeq \mathrm{H}^{2 l}\left(F l_{n}\right)
$$

Theorem [Ehresmann, 1934] The classes $\sigma_{w}, w \in S_{n}$, form an additive basis in $\mathrm{H}^{*}\left(F l_{n}, \mathbb{Z}\right)$. In particular, $\operatorname{dim} \mathrm{H}^{*}\left(F l_{n}\right)=n$!.

Q: How to multiply Schubert classes?
Q': How to express a Schubert class in terms of generators x_{i}.

Answer (due to Bernstein, Gelfand,Gelfand) can be given in terms of divided differences.

Divided differences

S_{n} acts on $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ by

$$
w f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{w^{-1}(1)}, \ldots, x_{w^{-1}(n)}\right) .
$$

Let $s_{i}=(i, i+1) \in S_{n}$ (adjacent transposition).

The divided difference operators are given by

$$
\partial_{i} f=\frac{1}{x_{i}-x_{i+1}}\left(1-s_{i}\right) f
$$

Schubert polynomials

Define the Schubert polynomials $\mathfrak{S}_{w}, w \in S_{n}$ recursively by

$$
\mathfrak{S}_{w_{0}}=x_{1}^{n-1} x_{2}^{n-2} \ldots x_{n-1}
$$

(the choice of Lascoux-Schützenberger [1982]) where $w_{0}=(n-1, n-2, \ldots, 1)$ is the longest permutation in S_{n}, and

$$
\mathfrak{S}_{w s_{i}}=\partial_{i} \mathfrak{S}_{w} \quad \text { whenever } \quad l\left(w s_{i}\right)=l(w)-1
$$

Theorem [BGG, 1973] \mathfrak{S}_{w} represents Schubert class σ_{w}.

Schubert polynomials for S_{3}

2. Gromov-Witten Invariants and Quantum Cohomology

(see [Ruan-Tian, Kontsevich-Manin])
Structure constants of the quantum cohomology ring $\mathrm{QH}^{*}(X)$ are the Gromov-Witten invariants (for genus 0).

An algebraic map $f: \mathbb{P}^{1} \rightarrow F l_{n}$ has
multidegree $d=\left(d_{1}, \ldots, d_{n-1}\right) \in \mathbb{Z}_{+}^{n-1}$, $d_{i}=$ degree of $f_{i}: \mathbb{P}^{1} \rightarrow F l_{n} \rightarrow G r(n, i)$.
$\mathcal{M}_{d}\left(\mathbb{P}^{1}, F l_{n}\right)=$ moduli space of such maps. For $Y \subset F l_{n}, t \in \mathbb{P}^{1}$, denote

$$
Y(t)=\left\{f \in \mathcal{M}_{d}\left(\mathbb{P}^{1}, F l_{n}\right) \mid f(t) \in Y\right\} .
$$

Gromov-Witten invariants: Fix $t_{1}, t_{2}, t_{3} \in \mathbb{P}^{1}$.

$$
\left\langle\sigma_{u}, \sigma_{v}, \sigma_{w}\right\rangle_{d}=\# \widetilde{\Omega}_{u}\left(t_{1}\right) \cap \widetilde{\Omega}_{v}\left(t_{2}\right) \cap \widetilde{\Omega}_{w}\left(t_{3}\right)
$$

provided $l(u)+l(v)+l(w)=\operatorname{dim} \mathcal{M}_{d}\left(\mathbb{P}^{1}, F l_{n}\right)$ $\widetilde{\Omega}_{u}, \widetilde{\Omega}_{v}, \widetilde{\Omega}_{w}$ are generic translates of $\Omega_{u}, \Omega_{v}, \Omega_{w}$.

Quantum multiplication

As an abelian group
$\mathrm{QH}^{*}=\mathrm{QH}^{*}\left(F l_{n}\right)=\mathrm{H}^{*}\left(F l_{n}, \mathbb{Z}\right) \otimes \mathbb{Z}\left[q_{1}, \ldots, q_{n-1}\right]$

Let $*: \mathrm{QH}^{*} \otimes \mathrm{QH}^{*} \rightarrow \mathrm{QH}^{*}$ be the $\mathbb{Z}\left[q_{1}, \ldots, q_{n-1}\right]-$ linear operation defined by

$$
\sigma_{u} * \sigma_{v}=\sum_{w \in S_{n}} \sum_{d} q^{d}\left\langle\sigma_{u}, \sigma_{v}, \sigma_{w} w_{0}\right\rangle_{d} \sigma_{w} .
$$

Then $\left(\mathrm{QH}^{*}, *\right)$ is a commutative and associative algebra called the quantum cohomology ring of $F l_{n}$.

Remark: $\left\langle\sigma_{u}, \sigma_{v}, \sigma_{w}\right\rangle_{(0, \ldots, 0)}$ is the ordinary intersection number. If we specialize $q_{1}=\cdots=q_{n-1}=0$, the operation $*$ becomes the standard multiplication in $\mathrm{H}^{*}\left(F l_{n}\right)$ (the "classical limit").

Quantum analogue of Borel's theorem

Let E_{1}, \ldots, E_{n} be the quantum elementary polynomials defined to be the coefficients of the characteristic polynomial of the matrix

$$
\left(\begin{array}{cccccc}
x_{1} & q_{1} & 0 & \cdots & 0 & 0 \\
-1 & x_{2} & q_{2} & \cdots & 0 & 0 \\
0 & -1 & x_{3} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & x_{n-1} & q_{n-1} \\
0 & 0 & 0 & \cdots & -1 & x_{n}
\end{array}\right)
$$

Example: $n=3$

$$
\begin{aligned}
& E_{1}=x_{1}+x_{2}+x_{3}, \\
& E_{2}=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+q_{1}+q_{2}, \\
& E_{3}=x_{1} x_{2} x_{3}+q_{1} x_{3}+q_{2} x_{1} .
\end{aligned}
$$

Theorem [Givental, Kim, Ciocan-Fontanine, 1993-1996] There is a canonical isomorphism

$$
\mathbb{Z}\left[x_{1}, \ldots, x_{n}, q_{1}, \ldots, q_{n-1}\right] / I_{n}^{q} \xrightarrow{\sim} \mathrm{QH}^{*}\left(F l_{n}, \mathbb{Z}\right)
$$

where I_{n}^{q} be the ideal generated by E_{1}, \ldots, E_{n}.

3. Main Results

Q: How to multiply Schubert classes in QH*?
Q': How to calculate the Gromov-Witten invariants $\left\langle\sigma_{u}, \sigma_{v}, \sigma_{w}\right\rangle_{d}$?
Q": How to express σ_{w} in terms of x_{i} in the ring QH^{*}.

$$
\begin{array}{ccc}
\mathrm{H}^{*}\left(F l_{n}\right) \otimes \mathbb{Z}\left[q_{j}\right] & \cong & \mathbb{Z}\left[x_{i}, q_{j}\right] / I_{n} \\
\| & & ? \\
\mathrm{QH}^{*}\left(F l_{n}\right) & \cong & \mathbb{Z}\left[x_{i}, q_{j}\right] / I_{n}^{q}
\end{array}
$$

We will construct the isomorphism

$$
\mathbb{Z}\left[x_{i}, q_{j}\right] / I_{n} \longrightarrow \mathbb{Z}\left[x_{i}, q_{j}\right] / I_{n}^{q}
$$

("quantization map")

Standard elementary monomials

$e_{i}^{k}=$ the $i^{\text {th }}$ elementary symmetric polynomial in x_{1}, \ldots, x_{k} and
$E_{i}^{k}=$ the $i^{\text {th }}$ quantum elementary polynomial in x_{1}, \ldots, x_{k}.

$$
\begin{gathered}
\text { For } I=\left(i_{1}, i_{2}, \ldots, i_{n-1}\right), \quad 0 \leq i_{p} \leq p \\
e_{I}=e_{i_{1}}^{1} e_{i_{2}}^{2} \ldots e_{i_{n-1}}^{n-1} \\
E_{I}=E_{i_{1}}^{1} E_{i_{2}}^{2} \ldots E_{i_{n-1}}^{n-1}
\end{gathered}
$$

Lemma Both $\left\{e_{I}\right\}$ and $\left\{E_{I}\right\}$ are K-liner bases in $K\left[x_{1}, x_{2}, \ldots\right]$, where $K=\mathbb{Z}\left[q_{1}, q_{2}, \ldots\right]$.

Quantization map

Define the K-liner map $\psi: K\left[x_{1}, x_{2}, \ldots\right] \rightarrow$ $K\left[x_{1}, x_{2}, \ldots\right]$ by

$$
\psi: e_{I} \longmapsto E_{I} \text { for all } I
$$

Remark. ψ induces a map

$$
K^{n}\left[x_{1}, \ldots, x_{n}\right] / I_{n} \longrightarrow K^{n}\left[x_{1}, \ldots, x_{n}\right] / I_{n}^{q}
$$

where $K^{n}=\mathbb{Z}\left[q_{1}, \ldots, q_{n-1}\right]$.

Quantum Schubert polynomials:

Define

$$
\mathfrak{S}_{w}^{q}:=\psi\left(\mathfrak{S}_{w}\right)
$$

Theorem [FGP] The quantum Schubert polynomial \mathfrak{S}_{w}^{q} represents the Schubert class σ_{w} in

$$
\mathrm{QH}^{*} \simeq \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]\left[q_{1}, \ldots, q_{n-1}\right] / I_{n}^{q} .
$$

Example

One can easily calculate the \mathfrak{S}_{w}^{q} using the divided differences ∂_{i}.

$$
\begin{aligned}
& \mathfrak{S}_{4321}=\mathfrak{S}_{w_{0}}=e_{123} ; \\
& \mathfrak{S}_{3421}=\partial_{1} \mathfrak{S}_{w_{0}}=\partial_{1} e_{123}=e_{023} ; \\
& \mathfrak{S}_{3412}=\partial_{3} e_{023}=\left(e_{2}^{2}\right)^{2}=e_{022}-e_{013} . \\
& \quad \mathfrak{S}_{3412}^{q} \\
& =E_{022}-E_{013} \\
& =x_{1}^{2} x_{2}^{2}+2 q_{1} x_{1} x_{2}-q_{2} x_{1}^{2}+q_{1}^{2}+q_{1} q_{2} .
\end{aligned}
$$

Quantum Schubert polynomials for S_{3}

Axiomatic approach

The following properties of the \mathfrak{S}_{w}^{q} follow from their geometric definition:

Axiom 1. Homogeneity: \mathfrak{S}_{w}^{q} is a homogeneous polynomial of degree $l(w)$ in x_{1}, \ldots, x_{n}, q_{1}, \ldots, q_{n-1}, assuming $\operatorname{deg}\left(x_{i}\right)=1$ and $\operatorname{deg}\left(q_{j}\right)=2$.

Axiom 2. Classical limit: Specializing $q_{1}=\cdots=q_{n-1}=0$ yields $\mathfrak{S}_{w}^{q}=\mathfrak{S}_{w}$.

Axiom 3. Positivity of GW-invariants:
The $c_{u v}^{w}$ in

$$
\mathfrak{S}_{u}^{q} \mathfrak{S}_{v}^{q}=\sum_{w} c_{u v}^{w} \mathfrak{S}_{w}^{q}
$$

are polynomials in the q_{i} with positive integer coefficients.

Axiom 4. Quantum elementary polynomials:
For a cycle $w=s_{k-i+1} \ldots s_{k}$, we have

$$
\mathfrak{S}_{w}^{q}=E_{i}\left(x_{1}, \ldots, x_{k}\right)
$$

Proved by [Ciocan-Fontanine].

Theorem [FGP] The polynomials \mathfrak{S}_{w}^{q} (modulo the ideal I_{n}^{q}) are uniquely determined by Axioms 1-4.

Conjecture The polynomials $\mathfrak{S}_{w}^{q}\left(\bmod I_{n}^{q}\right)$ are uniquely determined by Axioms 1-3.

Checked for S_{3} and S_{4}.

Quantum Monk's formula

Let $t_{a b}=(a, b)=s_{a} s_{a+1} \ldots s_{b-1} \ldots s_{a}$ (transposition).

Theorem [FGP] We have

$$
\mathfrak{S}_{s_{r}}^{q} \mathfrak{S}_{w}^{q}=\sum \mathfrak{S}_{w t_{a b}}^{q}+\sum q_{c} q_{c+1} \ldots q_{b-1} \mathfrak{S}_{w t_{c d}}^{q}
$$

where the first sum is over $a \leq r<b$ such that $l\left(w t_{a b}\right)=l(w)+1$ and the second sum is over $c \leq r<d$ such that $l\left(w t_{c d}\right)=l(w)-l\left(t_{c d}\right)$.

Note that $\mathfrak{S}_{s_{r}}^{q}=\mathfrak{S}_{s_{r}}=x_{1}+\cdots+x_{r}$.

Commuting operators approach

Define the operators on $K\left[x_{1}, x_{2}, \ldots\right]$

$$
X_{k}=x_{k}-\sum_{i<k} q_{i j} \partial_{(i j)}+\sum_{j>k} q_{k j} \partial_{(k j)}
$$

where $\partial_{(i j)}=\partial_{i} \partial_{i+1} \ldots \partial_{j-1} \ldots \partial_{i+1} \partial_{i}$ and $q_{i j}=q_{i} q_{i+1} \ldots q_{j-1}$.

Theorem [FGP]

- The operators X_{k} commute pairwise and $K\left[X_{1}, X_{2}, \ldots\right]$ is a free abelian group.
- For any $g \in K\left[x_{1}, x_{2}, \ldots\right]$ there is a unique polynomial $G \in K\left[X_{1}, X_{2}, \ldots\right]$ such that $G: 1 \mapsto g$.
- The map $g \mapsto G$ is the quantization map ψ.

In particular, $e_{I} \mapsto E_{I}$ and $\mathfrak{S}_{w} \mapsto \mathfrak{S}_{w}^{q}$.

- X_{i} induces the operator of quantum multiplication by x_{i} in $\mathbb{Z}\left[x_{i}, q_{j}\right] / I_{n} \simeq \mathrm{H}^{*} \otimes \mathbb{Z}\left[q_{j}\right]$.

Examples:

$$
\begin{aligned}
X_{i}(1) & =x_{i}, \\
X_{1} X_{1}(1) & =x_{1}^{2}+q_{1}, \\
X_{i} X_{i}(1) & =x_{i}^{2}-q_{i-1}+q_{i}, \quad i>1 \\
X_{i} X_{i+1}(1) & =X_{i+1} X_{i}(1)=x_{i} x_{i+1}-q_{i}, \\
X_{1} X_{1} X_{1}(1) & =x_{1}^{3}+2 q_{1} x_{1}+q_{1} x_{2} .
\end{aligned}
$$

Thus we obtain
$\psi: x_{i} \quad \longmapsto x_{i}$,
$\psi: x_{1}^{2} \longmapsto x_{1}^{2}-q_{1}$,
$\psi: x_{i}^{2} \quad \longmapsto x_{i}^{2}+q_{i-1}-q_{i}, \quad i>1$
$\psi: x_{i} x_{i+1} \longmapsto x_{i} x_{i+1}+q_{i}$,
$\psi: x_{1}^{3} \longmapsto x_{1}^{3}-2 q_{1} x_{1}-q_{1} x_{2}$.

Three definitions of \mathfrak{S}_{w}^{q} :

1. \mathfrak{S}_{w}^{q} represents σ_{w} in QH^{*}.
2. Quantization map $\psi: e_{I} \mapsto E_{I}$.
3. $\psi: g\left(x_{1}, x_{2}, \ldots\right) \mapsto G\left(X_{1}, X_{2}, \ldots\right)$.
