Permutohedra, Associahedra, and Beyond

or

Three Formulas for Volumes of Permutohedra

by Alex Postnikov
Massachusetts Institute of Technology

June 26, 2004
on the occasion of Richard P. Stanley's Birthday

Permutohedron

$$
P_{n}\left(x_{1}, \ldots, x_{n+1}\right):=\operatorname{ConvexHull}\left(\left(x_{w(1)}, \ldots, x_{w(n+1)}\right) \mid w \in S_{n+1}\right)
$$

This is a convex n-dimensional polytope in $H \subset \mathbb{R}^{n+1}$.

Example: $n=2\left(\right.$ type $\left.A_{2}\right)$

More generaly, for a Weyl group $W, P_{W}(x):=\operatorname{ConvexHull}(w(x) \mid w \in W)$.

Question: What is the volume $V_{n}:=\operatorname{Vol} P_{n}$?

Volume form is normalized so that the volume of a parallelepiped formed by generators of the lattice $\mathbb{Z}^{n+1} \cap H$ is 1 .

Question: What is the number of lattice points $N_{n}:=P_{n} \cap \mathbb{Z}^{n+1}$?

We will see that V_{n} and N_{n} are polynomials in x_{1}, \ldots, x_{n+1} of degree n. The polynomial V_{n} is the top homogeneous part of N_{n}. The Ehrhart polynomial of P_{n} is $E(t)=N_{n}\left(t x_{1}, \ldots, t x_{n}\right)$, and V_{n} is its top coefficient.

We will give 3 totally different formulas for these polynomials.

Special Case:

$$
P_{n}(n+1, n, \ldots, 1)=\operatorname{ConvexHull}\left((w(1), \ldots, w(n+1)) \mid w \in S_{n+1}\right)
$$

is the most symmetric permutohedron.
regular hexagon
subdivided into 3 rhombi

It is a zonotope $=$ Minkowsky sum of line intervals.
Well-known facts:
n $V_{n}(n+1, \ldots, 1)=(n+1)^{n-1}$ is the number of trees on $n+1$ labelled vertices. $P_{n}(n+1, \ldots, 1)$ can be subdivided into parallelepipeds of unit volume associated with trees. This works for any zonotope.
nner $N_{n}(n+1, \ldots, 1)$ is the number of forests on $n+1$ labelled vertices.

First Formula

Fix any distinct numbers $\lambda_{1}, \ldots, \lambda_{n+1}$ such that $\lambda_{1}+\cdots+\lambda_{n+1}=0$.

$$
V_{n}\left(x_{1}, \ldots, x_{n+1}\right)=\frac{1}{n!} \sum_{w \in S_{n+1}} \frac{\left(\lambda_{w(1)} x_{1}+\cdots+\lambda_{w(n+1)} x_{n+1}\right)^{n}}{\left(\lambda_{w(1)}-\lambda_{w(2)}\right)\left(\lambda_{w(2)}-\lambda_{w(3)}\right) \cdots\left(\lambda_{w(n)}-\lambda_{w(n+1)}\right)}
$$

Notice that the symmetrization in RHS does not depends on λ_{i} 's.

Idea of Proof Use Khovansky-Puchlikov's method:
${ }^{n} \mid$ Instead of just counting the number of lattice points in P, define $[P]=$ sum of formal exponents e^{a} over lattice points $a \in P \cap \mathbb{Z}^{n}$.

Int Now we can work with unbounded polytopes. For example, for a simplicial cone C, the sum $[C]$ is given by a simple rational expression.

Any polytope P can be explicitly presented as an alternating sum of simplicial cones: $[P]=\left[C_{1}\right] \pm\left[C_{2}\right] \pm \cdots$.

Applying this procedure to the permutohedron, we obtain ...

Let $\alpha_{1}, \ldots, \alpha_{n}$ be a system of simple roots for Weyl group W, and let L be the root lattice.

Theorem: For a dominant weight μ,

$$
\left[P_{W}(\mu)\right]:=\sum_{a \in P_{W}(\mu) \cap(L+\mu)} e^{a}=\sum_{w \in W} \frac{e^{w(\mu)}}{\left(1-e^{-w\left(\alpha_{1}\right)}\right) \cdots\left(1-e^{-w\left(\alpha_{n}\right)}\right)}
$$

Compare this with Weyl's character formula!
Note: LHS is obtained from the character $c h V_{\mu}$ of the irrep V_{μ} by replacing all nonzero coefficients with 1 . In type $A, c h V_{\mu}=$ Schur polynomial s_{μ}.

From this expression, one can deduce the First Formula and also its generalizations to other Weyl groups.

Second Formula

Let us use the coordinates y_{1}, \ldots, y_{n+1} related x_{1}, \ldots, x_{n+1} by

$$
\left\{\begin{array}{l}
y_{1}=-x_{1} \\
y_{2}=-x_{2}+x_{1} \\
y_{3}=-x_{3}+2 x_{2}-x_{1} \\
\ldots \\
y_{n+1}=-\binom{n}{0} x_{n}+\binom{n}{1} x_{n-1}-\cdots x_{1}
\end{array}\right.
$$

and write $V_{n}=\operatorname{Vol} P_{n}\left(x_{1}, \ldots, x_{n+1}\right)$ as a polynomial in y_{1}, \ldots, y_{n+1}.

Examples:

$$
\begin{aligned}
& V_{1}=\operatorname{Vol}\left(\left[\left(x_{1}, x_{2}\right),\left(x_{2}, x_{1}\right)\right]\right)=x_{1}-x_{2}=y_{2} \\
& V_{2}=\cdots=3 y_{2}^{2}+3 y_{2} y_{3}+\frac{1}{2} y_{3}^{2}
\end{aligned}
$$

Theorem:

$$
V_{n}\left(x_{1}, \ldots, x_{n+1}\right)=\frac{1}{n!} \sum_{\left(S_{1}, \ldots, S_{n}\right)} y_{\left|S_{1}\right|} \cdots y_{\left|S_{n}\right|}
$$

where the sum is over ordered collections of subsets $S_{1}, \ldots, S_{n} \subset[n+1]$ such that either of the following equivalent conditions is satisfied:

For any distinct i_{1}, \ldots, i_{k}, we have $\left|S_{i_{1}} \cup \cdots \cup S_{i_{k}}\right| \geq k+1$ (cf. Hall's Marriage Theorem)

For any $j \in[n+1]$, there is a system of distinct representatives in S_{1}, \ldots, S_{n} that avoids j.

Thus $n!V_{n}$ is a polynomial in y_{2}, \ldots, y_{n+1} with positive integer coefficients.

This formula can be extended to generalized permutohedra
a generalized permutohedron

Generalized permutohedra are obtained from usual permutohedra by moving faces while preserving all angles.
this is also
a generalized permutohedron

Generalized Permutohedra

Coordinate simplices in $\mathbb{R}^{n+1}: \Delta_{I}=$ ConvexHull $\left(e_{i} \mid i \in I\right)$, for $I \subseteq[n+1]$. Let $\mathbf{Y}=\left\{Y_{I}\right\}$ be the collection of variables $Y_{I} \geq 0$ associated with all subsets $I \subset[n+1]$. Define

$$
P_{n}(\mathbf{Y}):=\sum_{I \subset[n+1]} Y_{I} \cdot \Delta_{I} \quad \text { (Minkowsky sum) }
$$

Its combinatorial type depends only on the set of I 's for which $Y_{I} \neq 0$.

Examples:

In+ If $Y_{I}=y_{\mid I I}$, then $P_{n}(\mathbf{Y})$ is a usual permutohedron.
lu* If $Y_{I} \neq 0$ iff I is a consecutive interval, then $P_{n}(\mathbf{Y})$ is an associahedron.
ner If $Y_{I} \neq 0$ iff I is a cyclic interval, then $P_{n}(\mathbf{Y})$ is a cyclohedron.
Un If $Y_{I} \neq 0$ iff I is a connected set in Dynkin diagram, then $P_{n}(\mathbf{Y})$ is a generalized associahedron related to DeConcini-Procesi's work. (Do not confuse with Fomin-Zelevinsky's generalized associahedra!)
n! If $Y_{I} \neq 0$ iff I is an initial interval $\{1, \ldots, i\}$, then $P_{n}(\mathbf{Y})$ is the Stanley-Pitman polytope.

Theorem: The volume of the generalized permutohedron is given by

$$
\operatorname{Vol} P_{n}(\mathbf{Y})=\frac{1}{n!} \sum_{\left(S_{1}, \ldots, S_{n}\right)} Y_{S_{1}} \cdots Y_{S_{n}},
$$

where S_{1}, \ldots, S_{n} satisfy the same condition.
Theorem: The \# of lattice points in the generalized permutohedron is

$$
P_{n}(\mathbf{Y}) \cap \mathbb{Z}^{n+1}=\frac{1}{n!} \sum_{\left(S_{1}, \ldots, S_{n}\right)}\left\{Y_{S_{1}} \cdots Y_{S_{n}}\right\}
$$

$$
\left\{\prod_{I} Y_{I}^{a_{I}}\right\}:=\left(Y_{[n+1]}+1\right)^{\left\{a_{[n+1]}\right\}} \prod_{I \neq[n+1]} Y_{I}^{\left\{a_{I}\right\}}, \text { where } Y^{\{a\}}=Y(Y+1) \cdots(Y+a-1) .
$$

This extends a formula from [Stanley-Pitman] for the volume of their polytope. In this case, the above summation is over parking functions.

We also have a combinatorial description of face structure of generalized permutohedra in terms of nested collections of subsets in $[n+1]$. This is related to DeConcini-Procesi's wonderful arrangements.

Not enough time for this now.

The most interesting part of the talk is ...

Third Formula

Let use the coordinates z_{1}, \ldots, z_{n} related to x_{1}, \ldots, x_{n+1} by

$$
z_{1}=x_{1}-x_{2}, z_{2}=x_{2}-x_{3}, \cdots, z_{n}=x_{n}-x_{n+1}
$$

These coordinates are canonically defined for an arbitrary Weyl group. Then the permutohedron P_{n} is the Minkowsky sum

$$
P_{n}=z_{1} \Delta_{1 n}+z_{2} \Delta_{2 n}+\cdots+z_{n} \Delta_{n n}
$$

of hypersimplices $\Delta_{k n}=P_{n}(1, \ldots, 1,0, \ldots, 0)$ (with $k 1$'s).

This implies

$$
\text { Vol } P_{n}=\sum_{c_{1}, \ldots, c_{n}} A_{c_{1}, \ldots, c_{n}} \frac{z_{1}^{c_{1}}}{c_{1}!} \cdots \frac{z_{n}^{c_{n}}}{c_{n}!},
$$

where the sum is over $c_{1}, \ldots, c_{n} \geq 0, c_{1}+\cdots+c_{n}=n$, and

$$
A_{c_{1}, \ldots, c_{n}}=\operatorname{MixedVolume}\left(\Delta_{1 n}^{c_{1}}, \ldots, \Delta_{n n}^{c_{n}}\right) \in \mathbb{Z}_{>0}
$$

In particular, $n!V_{n}$ is a positive integer polynomial in z_{1}, \ldots, z_{n}.
Let us call the integers $A_{c_{1}, \ldots, c_{n}}$ the Mixed Eulerian numbers.
Examples:

$$
\begin{aligned}
& V_{1}=1 z_{1} \\
& V_{2}=1 \frac{z_{1}^{2}}{2}+2 z_{1} z_{2}+1 \frac{z_{2}^{2}}{2} \\
& V_{3}=1 \frac{z_{1}^{3}}{3!}+2 \frac{z_{1}^{2}}{2} z_{2}+4 z_{1} \frac{z_{2}}{2}+4 \frac{z_{2}^{3}}{3!}+3 \frac{z_{1}^{2}}{2} z_{3}+6 z_{1} z_{2} z_{3}+ \\
& +4 \frac{z_{2}^{2}}{2} z_{3}+3 z_{1} \frac{z_{3}^{2}}{2}+2 z_{2} \frac{z_{3}^{2}}{2}+1 \frac{z_{3}^{3}}{3!}
\end{aligned}
$$

(The mixed Eulerian numbers are marked in red.)

Properties of Mixed Eulerian numbers:

|n| $A_{c_{1}, \ldots, c_{n}}$ are positive integers defined for $c_{1}, \ldots, c_{n} \geq 0, c_{1}+\cdots+c_{n}=n$.
U" $\sum \frac{1}{c_{1}!\cdots c_{n}!} A_{c_{1}, \ldots, c_{n}}=(n+1)^{n-1}$.
nu* $A_{0, \ldots, 0, n, 0, \ldots, 0}\left(n\right.$ is in k-th position) is the usual Eulerian number $A_{k n}$ $=\#$ permutations in S_{n} with k descents $=n!\operatorname{Vol} \Delta_{k n}$.
${ }^{n}+1+A_{1, \ldots, 1}=n$!
(14* $A_{k, 0, \ldots, \ldots, n-k}=\binom{n}{k}$
n! $A_{c_{1}, \ldots, c_{n}}=1^{c_{1}} 2^{c_{2}} \cdots n^{c_{n}}$ if $c_{1}+\cdots+c_{i} \geq i$, for $i=1, \ldots, n$. There are exactly $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ such sequences $\left(c_{1}, \ldots, c_{n}\right)$.

When I showed these numbers to Richard Stanley, he conjectured that
!
Moreover, he conjectured that ...

One can subdivide all sequences $\left(c_{1}, \ldots, c_{n}\right)$ into C_{n} classes such that the sum of mixed Eulerian numbers for each class is $n!$. For example, $A_{1, \ldots, 1}=$ n ! and $A_{n, 0, \ldots, 0}+A_{0, n, 0, \ldots, 0}+A_{0,0, n, \ldots, 0}+\cdots+A_{0, \ldots, 0, n}=n$!, because the sum of Eulerian numbers $\sum_{k} A_{k n}$ is $n!$.

Let us write $\left(c_{1}, \ldots, c_{n}\right) \sim\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right)$ iff $\left(c_{1}, \ldots, c_{n}, 0\right)$ is a cyclic shift of $\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, 0\right)$. Stanley conjectured that, for fixed $\left(c_{1}, \ldots, c_{n}\right)$, we have

$$
\sum_{\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right) \sim\left(c_{1}, \ldots, c_{n}\right)} A_{c_{1}^{\prime}, \ldots, c_{n}^{\prime}}=n!
$$

Exercise: Check that there are exactly C_{n} equivalence classes of sequences. Every equivalence class contains exactly one sequence $\left(c_{1}, \ldots, c_{n}\right)$ such that $c_{1}+\cdots+c_{i} \geq i$, for $i=1, \ldots, n$. (For this sequence, $A_{c_{1}, \ldots, c_{n}}=1^{c_{1}} \cdots n^{c_{n}}$.)

These conjectures follow from ...

Theorem: Let $U_{n}\left(z_{1}, \ldots, z_{n+1}\right)=\operatorname{Vol} P_{n}$. (It does not depend on z_{n+1}.)

$$
\begin{aligned}
& U_{n}\left(z_{1}, \ldots, z_{n+1}\right)+U_{n}\left(z_{n+1}, z_{1}, \ldots, z_{n}\right)+\cdots+U_{n}\left(z_{2}, \ldots, z_{n+1}, z_{1}\right)= \\
& \\
& =\left(z_{1}+\cdots+z_{n+1}\right)^{n}
\end{aligned}
$$

This theorem has a simple geometric proof. It extends to any Weyl group. Cyclic shifts come from symmetries of type A extended Dynkin diagram. Idea of Proof:

The area of blue triangle is $\frac{1}{6}$ sum of the areas of three hexagons.

Corollary: Fix $z_{1}, \ldots, z_{n+1}, \lambda_{1}, \ldots, \lambda_{n+1}$ such that $\lambda_{1}+\cdots+\lambda_{n+1}=0$. Symmetrizing the expression

$$
\frac{1}{n!} \frac{\left(\lambda_{1} z_{1}+\left(\lambda_{1}+\lambda_{2}\right) z_{2}+\cdots\left(\lambda_{1}+\cdots+\lambda_{n+1}\right) z_{n+1}\right)^{n}}{\left(\lambda_{1}-\lambda_{2}\right) \cdots\left(\lambda_{n}-\lambda_{n+1}\right)}
$$

with respect to $(n+1)$! permutations of $\lambda_{1}, \ldots, \lambda_{n+1}$ and $(n+1)$ cyclic permutations of $z_{1}, \ldots z_{n+1}$, we obtain

$$
\left(z_{1}+\cdots+z_{n+1}\right)^{n}
$$

Problem: Find a direct proof.

Combinatorial interpretation for $A_{c_{1}, \ldots, c_{n}}$

m" The nodes are labelled by $1, \ldots, n$ such that, for a node labelled l, labels of all in the left (right) branch are less (greater) than l. The labels of all descendants of a node form a consecutive interval $I=[a, b]$.
n** We have an increasing labelling of the nodes by $1, \ldots, n$.
N* Each node is labeled by z_{i} such that $i \in I ; z^{T}:=$ product of all z_{i}^{\prime} 's.
Tu* The weight of a node labelled by l and z_{i} with interval $[a, b]$ is $\frac{i-a+1}{l-a+1}$ if $i \leq l$, and $\frac{b-i+1}{b-l+1}$ if $i \geq l$. The weight $w t(T)$ of tree is the product of weights of its nodes.

Theorem: The volume of the permutohedron is

$$
V_{n}=\sum_{T} w t(T) \cdot z^{T}
$$

where the sum is over plane binary trees with blue, red, and green labels.
Combinatorial interpretation for the mixed Eulerian numbers:
Theorem: Let $z_{i_{1}} \cdots z_{i_{n}}=z_{1}^{c_{1}} \cdots z_{n}^{c_{n}}$. Then

$$
A_{c_{1}, \ldots, c_{n}}=\sum_{T} n!w t(T)
$$

over same kind of trees T such that $z^{T}=z_{i_{1}} \cdots z_{i_{n}}$ (in this order).
Note that all terms $n!w t(T)$ in this formula are positive integer.

Comparing different formulas for V_{n}, we obtain a lot of interesting combinatorial identities. For example ...

Corollary:

$$
(n+1)^{n-1}=\sum_{T} \frac{n!}{2^{n}} \prod_{v \in T}\left(1+\frac{1}{h(v)}\right)
$$

where is sum is over unlabeled plane binary trees T on n nodes, and $h(v)$ denotes the "hook-length" of a node v in T, i.e., the number of descendants of v (including v).

Example: $n=3$

hook-lengths of binary trees
The identity says that

$$
(3+1)^{2}=3+3+3+3+4
$$

Problem: Prove this identity combinatorially.

