Affine Weyl Groups in K-theory Representation Theory, and Combinatorics

Alex Postnikov
Department of Mathematics Massachusetts Institute of Technology apost@math.mit.edu
(joint with Cristian Lenart)

June 14, 2004
available as preprint arXiv:math.RT/0309207

Notations:

G - complex semisimple Lie group
T - maximal torus
B - Borel subgroup, $G \supset B \supset T$
G / B - generalized flag variety (e.g., $S L_{n} / B$)
Λ - weight lattice and Φ - root system W - Weyl group (generated by $s_{\alpha}, \alpha \in \Phi$)
$X_{w}^{o}=B w B / B, w \in W$ - Schubert cells

$$
G / B=\bigcup X_{w}^{o} \quad \text { (Schubert decomposition) }
$$

$X_{w}=\overline{X_{w}^{o}}$ - Schubert varieties
$\mathcal{O}_{w}=\mathcal{O}_{X_{w}}$ - structure sheaf of X_{w}
$\mathcal{L}_{\lambda}, \lambda \in \Lambda$ - line bundle on G / B
$R(T) \simeq \mathbb{Z}[\wedge]$ - representation ring of torus T (ring of linear combinations of $e^{\lambda}, \lambda \in \Lambda$)
$K_{T}(G / B)$ - Grothendieck ring of T-equivariant sheaves on $G / B ; \quad\left[\mathcal{O}_{w}\right],\left[\mathcal{L}_{\lambda}\right] \in K_{T}(G / B)$

Claim. [Kostant,Kumar] $K_{T}(G / B)$ is a free $R(T)$-module with basis given by $\left[\mathcal{O}_{w}\right], w \in W$.

Problem: Give a combinatorial formula for coefficients $c_{u, w}^{\lambda, \mu} \in \mathbb{Z}$ in

$$
\left[\mathcal{L}_{\lambda}\right] \cdot\left[\mathcal{O}_{u}\right]=\sum_{w \in W, \mu \in \Lambda} c_{u, w}^{\lambda, \mu} e^{\mu}\left[\mathcal{O}_{w}\right]
$$

($K_{T^{-}}$Chevalley formula)

This would generalize Chevalley formula for $H^{*}(G / B):[\lambda] \cdot\left[X_{u}\right]=\sum_{u s_{\alpha} \lessdot u}\left(\lambda, \alpha^{\vee}\right)\left[X_{u s_{\alpha}}\right]$ (called Monk's or Pieri's formula in type A)

Pittie and Ram gave a formula for $c_{u, w}^{\lambda, \mu}$, for dominant λ, in terms of Littelmann paths. This formula involves several recursive procedures. Hard to use for explicit computations.

We present a simpler and more explicit $K_{T^{-}}$ Chevalley formula for arbitrary weights λ. It is closer to the original Chevalley formula.

Application: model for characters

Assume that λ is dominant.
V_{λ} - irreducible representation of G
$V_{\lambda, u}, u \in W$ - Demazure B-module
In particular, $V_{\lambda} \simeq V_{\lambda, w_{\circ}}$, where w_{\circ} is the longest element in W.

Lemma.

$$
\begin{aligned}
& \left.\operatorname{ch}\left(V_{\lambda}\right)=\sum_{w, \mu} c_{w o, w}^{\lambda, \mu} e^{\mu} \quad \text { (characters of irreps } V_{\lambda}\right) \\
& \operatorname{ch}\left(V_{\lambda, u}\right)=\sum_{w, \mu} c_{u, w}^{\lambda, \mu} e^{\mu} \quad \text { (Demazure characters) }
\end{aligned}
$$

Our formula implies a simple subtraction-free combinatorial formula for $\operatorname{ch}\left(V_{\lambda}\right)$ and $\operatorname{ch}\left(V_{\lambda, u}\right)$. Simpler than Littelmann path model.

λ-chains

$\mathcal{A}=\left\{H_{\alpha, k} \mid \alpha \in \Phi, k \in \mathbb{Z}\right\}$ - affine Coxeter arrangement for G^{\vee}. Its regions, called alcoves, correspond to elements of $W_{\text {aff }}$.

Fix a weight $\lambda \in \wedge$. Let $\pi(t)$ be a continuous path in $\mathfrak{h}_{\mathbb{R}}^{*}$ such that $\pi(0) \in$ (fund. alcove) and $\pi(1)=\pi(0)+\lambda$. It crosses affine hyperplanes $H_{1}, \ldots, H_{l} \in \mathcal{A}$. Let β_{i} be the root perpendicular to H_{i}. Call such a collection of roots $\left(\beta_{1}, \ldots, \beta_{l}\right)$ a λ-chain. λ-chains are in 1-1 correspondence with decompositions $v_{\lambda}=s_{i_{1}} \cdots s_{i_{l}}$ of a certain element in $W_{\text {aff }}$.

Example: (type A_{2})

Bruhat operators

For positive root α, define operator B_{α} by

$$
\begin{aligned}
B_{\alpha} & :\left[\mathcal{O}_{w}\right] \longmapsto\{ \\
B_{-\alpha} & =-B_{\alpha}
\end{aligned}
$$

$$
R_{\alpha}=1+B_{\alpha} \quad(R \text {-matrix })
$$

This R-matrix satisfies the Yang-Baxter equation (in Cherednik sense). In particular, for a root subsystem in Φ of type A_{2} generated by (α, β), we have

$$
R_{\alpha} R_{\alpha+\beta} R_{\beta}=R_{\beta} R_{\alpha+\beta} R_{\alpha}
$$

similar relations for type B_{2} and G_{2} subsystems

For a λ-chain $\left(\beta_{1}, \ldots, \beta_{l}\right)$, define

$$
R^{[\lambda]}=R_{\beta_{1}} \cdots R_{\beta_{l}}
$$

Yang-Baxter equation implies that $R^{[\lambda]}$ does not depend on a choice of λ-chain.

Main result

Theorem. (K-Chevalley formula) The operator $R^{[\lambda]}$ acts on $K(G / B)$ as the operator of multiplication by $\left[\mathcal{L}_{\lambda}\right]$.

Let X^{λ} be the $R(T)$-linear operator given by

$$
X^{\lambda}:\left[\mathcal{O}_{w}\right] \mapsto e^{w\left(\lambda / h^{\vee}\right)}\left[\mathcal{O}_{w}\right],
$$

where h^{\vee} is the dual Coxeter number

$$
\begin{aligned}
& \tilde{R}_{\alpha}=X^{\rho}\left(X^{\alpha}+B_{\alpha}\right) X^{-\rho}, \quad \text { where } \rho=\frac{1}{2} \sum_{\alpha>0} \alpha \\
& \tilde{R}^{[\lambda]}=\tilde{R}_{\beta_{1}} \cdots \tilde{R}_{\beta_{l}}=X^{\rho}\left(X^{\beta_{1}}+B_{\beta_{1}}\right) \cdots\left(X^{\beta_{l}}+B_{\beta_{l}}\right) X^{-\rho}
\end{aligned}
$$

Theorem (K_{T}-Chevalley formula) The operator $\widetilde{R}^{[\lambda]}$ acts on $K_{T}(G / B)$ as the operator of multiplication by $\left[\mathcal{L}_{\lambda}\right]$.

This implies that the basis expansion of the product $\left[\mathcal{L}_{\lambda}\right] \cdot\left[\mathcal{O}_{u}\right]$ is given as a certain sum over saturated chains in the Bruhat order.

Formula for character of V_{λ}

Assume that λ is dominant. Let $\left(\beta_{1}, \ldots, \beta_{l}\right)$ be a λ-chain, let H_{1}, \ldots, H_{l} be the corresponding collection of affine hyperplanes, and let

$$
r_{j}=s_{\beta_{j}, k_{j}}=\text { affine reflection w.r.t. } H_{j}
$$

$r_{1}, \ldots, r_{l} \in W_{\text {aff }}$

Corollary.

$$
\operatorname{ch}\left(V_{\lambda}\right)=\sum_{J} e^{-r_{j_{1}} \cdots r_{j_{l}}(-\lambda)}
$$

where the sum is over $J=\left\{j_{1}<\cdots<j_{s}\right\} \subset$ $\{1, \ldots, l\}$ such that

$$
1 \lessdot s_{\beta_{j_{1}}} \lessdot s_{\beta_{j_{1}}} s_{\beta_{j_{2}}} \lessdot \cdots \lessdot s_{\beta_{j_{1}}} \cdots s_{\beta_{j_{s}}}
$$

is a saturated increasing chain in the Bruhat order on W.

Products with special Schubert classes

[$\left.\mathcal{O}_{w_{\circ} s_{i}}\right]$ - special classes for codimension 1 Schubert varieties. They generate $K_{T}(G / B)$ as an algebra over $R(T)$.

Lemma. cf. [Brion] $\left[\mathcal{O}_{w_{0} s_{i}}\right]=1-e^{w_{0}\left(\omega_{i}\right)}\left[\mathcal{L}_{-\omega_{i}}\right]$ Here $\omega_{i} \in \Lambda$ are the fundamental weights.

Our formula implies a rule for coefficients in

$$
\left[\mathcal{O}_{w_{\circ} s_{i}}\right] \cdot\left[\mathcal{O}_{u}\right]=\sum_{w, \mu} \ldots e^{\mu}\left[\mathcal{O}_{w}\right]
$$

It is hard to directly apply Pittie-Ram's formula because this expression involves negative fundamental weights $-\omega_{i}$.

Two duality formulas

Two involutions $u \mapsto u w_{\circ}$ and $u \mapsto w_{\circ} u$ on W map saturated increasing chains in the Bruhat order to saturated decreasing chains. Our $K_{T^{-}}$ Chevalley formula easily implies the following two symmetries.

Corollary. $c_{u, w}^{\lambda, \mu}=(-1)^{\ell(u)-\ell(w)} c_{w}^{w_{\circ}(\lambda), \mu} w_{\circ}, u w_{\circ}$
[Brion] proved this for $K(G / B)$ using an involved geometric argument.

New duality:

Corollary. $c_{u, w}^{\lambda, \mu}=(-1)^{\ell(u)-\ell(w)} c_{w_{\circ} w, w_{\circ}}^{-\lambda, u} w_{\circ}(\mu)$

Dual K_{T}-Chevalley formula

\mathcal{I}_{w} - sheaf given by the exact sequence

$$
0 \rightarrow \mathcal{I}_{X_{w}} \rightarrow \mathcal{O}_{X_{w}} \rightarrow \mathcal{O}_{\partial X_{w}} \rightarrow 0
$$

where $\partial X_{w}=\cup_{u<w} X_{u}$ - boundary of X_{w}
The classes $\left[\mathcal{I}_{w}\right], w \in W$, form an $R(T)$-basis of $K_{T}(G / B)$ (studied by [Kostant-Kumar]).

$$
\begin{aligned}
& {\left[\mathcal{I}_{w}\right]=\sum_{u \leq w}(-1)^{\ell(u)}\left[\mathcal{O}_{u}\right]} \\
& {\left[\mathcal{O}_{w}\right]=\sum_{u \leq w}(-1)^{\ell(u)}\left[\mathcal{I}_{u}\right]}
\end{aligned}
$$

(Möbius inversion on the Bruhat order)

Lemma.

$$
\left[\mathcal{L}_{\lambda}\right] \cdot\left[\mathcal{I}_{u}\right]=\sum_{w \in W, \mu \in \Lambda} c_{u, w}^{-\lambda,-\mu} e^{\mu}\left[\mathcal{I}_{w}\right]
$$

Our K_{T}-Chevalley formula immediately gives a rule for the expansion of $\left[\mathcal{L}_{\lambda}\right] \cdot\left[\mathcal{I}_{u}\right]$.

Idea of proof of K_{T}-Chevalley formula:

Let T_{i} be the Demazure operators. They act $R(T)$-linearly on $K_{T}(G / B)$. (In type A, these are the isobaric divided differences operators.) They satisfy Hecke algebra relations for $q=0$. ($T_{i}^{2}=T_{i}$ and the Coxeter relations)

According to [Kostant, Kumar], for a reduced decomposition $w=s_{i_{1}} \cdots s_{i_{l}}$,

$$
\left[\mathcal{O}_{w}\right]=T_{i_{l}} \cdots T_{i_{1}}\left(\left[\mathcal{O}_{1}\right]\right)
$$

In order to show that $\tilde{R}^{[\lambda]}=\left[\mathcal{L}_{\lambda}\right] \times$ (operator of multiplication by $\left[\mathcal{L}_{\lambda}\right]$), it is enough to show that the operators $\tilde{R}^{[\lambda]}$ satisfy the same commutation relations with T_{i} 's as the operators $\left[\mathcal{L}_{\lambda}\right] \times$ do. (Affine Hecke algebra relations.)

First, we give commutation relations for the operators R_{α} and T_{i}, then deduce the affine Hecke algebra relations for $\tilde{R}^{[\lambda]}$ and T_{i}. Q.E.D.

Quantum K-theory

Quantum Bruhat operators, for a root α,
$Q_{\alpha}:\left[\mathcal{O}_{w}\right] \mapsto \begin{cases}{\left[\mathcal{O}_{w s_{\alpha}}\right]} & \ell\left(w s_{\alpha}\right)=\ell(w)-1 \\ q^{\alpha^{\vee}}\left[\mathcal{O}_{w s_{\alpha}}\right] & \ell\left(w s_{\alpha}\right)=\ell(w)+2\left|\alpha^{\vee}\right|-1 \\ 0 & \text { otherwise }\end{cases}$
where $\left|\alpha^{\vee}\right|=\left(\rho, \alpha^{\vee}\right)$ (height of coroot α^{\vee}), and $q^{\alpha^{\vee}}=q_{1}^{d_{1}} \cdots q_{r}^{d_{r}}$, for $\alpha^{\vee}=d_{1} \alpha_{1}^{\vee}+\cdots+d_{r} \alpha_{r}^{\vee}$.

In [Brenti,Fomin,Postnikov], we proved that Q_{α} 's satisfy the Yang-Baxter equation. One can write the quantum Chevalley formula for the quantum cohomology $Q H^{*}(G / B)$, using these operators.
[Lee] and [Givental,Lee] defined and study quantum K-theory $Q K(G / B)$. It involves certain K-invariants of Gromov-Witten type.

Conjecture. We obtain a Chevalley-type product formula for $Q K(G / B)$ if we replace operators B_{α} in our K-Chevalley formula with Q_{α}.

