Affine Weyl Groups in *K*-theory Representation Theory, and Combinatorics

Alex Postnikov Department of Mathematics Massachusetts Institute of Technology apost@math.mit.edu

(joint with Cristian Lenart)

June 14, 2004

available as preprint arXiv:math.RT/0309207

Notations:

G - complex semisimple Lie group T - maximal torus B - Borel subgroup, $G \supset B \supset T$ G/B - generalized flag variety (e.g., SL_n/B) Λ - weight lattice and Φ - root system W - Weyl group (generated by $s_{\alpha}, \alpha \in \Phi$) $X_w^o = BwB/B, w \in W$ - Schubert cells

 $G/B = \bigcup_{w \in W} X_w^o \quad \text{(Schubert decomposition)}$

$$\begin{split} X_w &= \overline{X_w^o} - \text{Schubert varieties} \\ \mathcal{O}_w &= \mathcal{O}_{X_w} - \text{structure sheaf of } X_w \\ \mathcal{L}_\lambda, \ \lambda \in \Lambda - \text{line bundle on } G/B \\ R(T) &\simeq \mathbb{Z}[\Lambda] - \text{representation ring of torus } T \\ (\text{ring of linear combinations of } e^{\lambda}, \ \lambda \in \Lambda) \end{split}$$

 $K_T(G/B)$ – Grothendieck ring of *T*-equivariant sheaves on G/B; $[\mathcal{O}_w], [\mathcal{L}_{\lambda}] \in K_T(G/B)$

Claim. [Kostant,Kumar] $K_T(G/B)$ is a free R(T)-module with basis given by $[\mathcal{O}_w]$, $w \in W$.

Problem: Give a combinatorial formula for coefficients $c_{u,w}^{\lambda,\mu} \in \mathbb{Z}$ in

$$[\mathcal{L}_{\lambda}] \cdot [\mathcal{O}_{u}] = \sum_{w \in W, \ \mu \in \Lambda} c_{u,w}^{\lambda,\mu} e^{\mu} [\mathcal{O}_{w}]$$

 $(K_T$ -Chevalley formula)

This would generalize *Chevalley formula* for $H^*(G/B)$: $[\lambda] \cdot [X_u] = \sum_{u s_\alpha \leq u} (\lambda, \alpha^{\vee}) [X_{u s_\alpha}]$ (called Monk's or Pieri's formula in type A)

Pittie and Ram gave a formula for $c_{u,w}^{\lambda,\mu}$, for <u>dominant</u> λ , in terms of Littelmann paths. This formula involves several recursive procedures. Hard to use for explicit computations.

We present a simpler and more explicit K_T -Chevalley formula for <u>arbitrary</u> weights λ . It is closer to the original Chevalley formula.

Application: model for characters

Assume that λ is dominant.

 V_{λ} - irreducible representation of G $V_{\lambda,u}$, $u \in W$ - Demazure B-module In particular, $V_{\lambda} \simeq V_{\lambda,w_{\circ}}$, where w_{\circ} is the longest element in W.

Lemma.

$$ch(V_{\lambda}) = \sum_{w,\mu} c_{w_{\circ},w}^{\lambda,\mu} e^{\mu}$$
 (characters of irreps V_{λ})

 $ch(V_{\lambda,u}) = \sum_{w,\mu} c_{u,w}^{\lambda,\mu} e^{\mu}$ (Demazure characters)

Our formula implies a simple subtraction-free combinatorial formula for $ch(V_{\lambda})$ and $ch(V_{\lambda,u})$. Simpler than Littelmann path model.

λ -chains

 $\mathcal{A} = \{H_{\alpha,k} \mid \alpha \in \Phi, k \in \mathbb{Z}\}$ – affine Coxeter arrangement for G^{\vee} . Its regions, called *alcoves*, correspond to elements of W_{aff} .

Fix a weight $\lambda \in \Lambda$. Let $\pi(t)$ be a continuous path in $\mathfrak{h}_{\mathbb{R}}^*$ such that $\pi(0) \in (\text{fund. alcove})$ and $\pi(1) = \pi(0) + \lambda$. It crosses affine hyperplanes $H_1, \ldots, H_l \in \mathcal{A}$. Let β_i be the root perpendicular to H_i . Call such a collection of roots $(\beta_1, \ldots, \beta_l)$ a λ -chain. λ -chains are in 1-1 correspondence with decompositions $v_{\lambda} = s_{i_1} \cdots s_{i_l}$ of a certain element in W_{aff} .

Example: (type A_2)

Bruhat operators

For positive root α , define operator B_{α} by

$$B_{\alpha} : [\mathcal{O}_w] \longmapsto \begin{cases} [\mathcal{O}_{ws_{\alpha}}] & \text{if } \ell(ws_{\alpha}) = \ell(w) - 1 \\ 0 & \text{otherwise} \end{cases}$$
$$B_{-\alpha} = -B_{\alpha}$$

 $R_{\alpha} = 1 + B_{\alpha}$ (*R*-matrix)

This *R*-matrix satisfies the Yang-Baxter equation (in Cherednik sense). In particular, for a root subsystem in Φ of type A_2 generated by (α, β) , we have

$$R_{\alpha} R_{\alpha+\beta} R_{\beta} = R_{\beta} R_{\alpha+\beta} R_{\alpha}$$

similar relations for type B_2 and G_2 subsystems

For a
$$\lambda$$
-chain $(\beta_1, \ldots, \beta_l)$, define

$$R^{[\lambda]} = R_{\beta_1} \cdots R_{\beta_l}$$

Yang-Baxter equation implies that $R^{[\lambda]}$ does not depend on a choice of λ -chain.

Main result

Theorem. (*K*-Chevalley formula) The operator $R^{[\lambda]}$ acts on K(G/B) as the operator of multiplication by $[\mathcal{L}_{\lambda}]$.

Let X^{λ} be the R(T)-linear operator given by $X^{\lambda} : [\mathcal{O}_w] \mapsto e^{w(\lambda/h^{\vee})} [\mathcal{O}_w],$ where h^{\vee} is the dual Coxeter number $\tilde{R}_{\alpha} = X^{\rho} (X^{\alpha} + B_{\alpha}) X^{-\rho}, \quad \text{where } \rho = \frac{1}{2} \sum_{\alpha > 0} \alpha$ $\tilde{R}^{[\lambda]} = \tilde{R}_{\beta_1} \cdots \tilde{R}_{\beta_l} = X^{\rho} (X^{\beta_1} + B_{\beta_1}) \cdots (X^{\beta_l} + B_{\beta_l}) X^{-\rho}$

Theorem (K_T -Chevalley formula) The operator $\tilde{R}^{[\lambda]}$ acts on $K_T(G/B)$ as the operator of multiplication by $[\mathcal{L}_{\lambda}]$.

This implies that the basis expansion of the product $[\mathcal{L}_{\lambda}] \cdot [\mathcal{O}_{u}]$ is given as a certain sum over saturated chains in the Bruhat order.

Formula for character of V_{λ}

Assume that λ is dominant. Let $(\beta_1, \ldots, \beta_l)$ be a λ -chain, let H_1, \ldots, H_l be the corresponding collection of affine hyperplanes, and let

 $r_j = s_{\beta_j,\,k_j} = \text{affine reflection w.r.t. } H_j$ $r_1,\ldots,r_l \in W_{\text{aff}}$

Corollary.

$$ch(V_{\lambda}) = \sum_{J} e^{-r_{j_1} \cdots r_{j_l}(-\lambda)},$$

where the sum is over $J = \{j_1 < \cdots < j_s\} \subset \{1, \ldots, l\}$ such that

$$1 \lessdot s_{\beta_{j_1}} \lessdot s_{\beta_{j_1}} s_{\beta_{j_2}} \lessdot \cdots \lessdot s_{\beta_{j_1}} \cdots s_{\beta_{j_s}}$$

is a saturated increasing chain in the Bruhat order on W.

Products with special Schubert classes

 $[\mathcal{O}_{w_{\circ}s_{i}}]$ – special classes for codimension 1 Schubert varieties. They generate $K_{T}(G/B)$ as an algebra over R(T).

Lemma. cf. [Brion] $[\mathcal{O}_{w_0s_i}] = 1 - e^{w_0(\omega_i)}[\mathcal{L}_{-\omega_i}]$

Here $\omega_i \in \Lambda$ are the fundamental weights.

Our formula implies a rule for coefficients in

$$\left[\mathcal{O}_{w \circ s_i}\right] \cdot \left[\mathcal{O}_u\right] = \sum_{w, \mu} \dots \, e^{\mu} \left[\mathcal{O}_w\right]$$

It is hard to directly apply Pittie-Ram's formula because this expression involves *negative* fundamental weights $-\omega_i$.

Two duality formulas

Two involutions $u \mapsto u w_{\circ}$ and $u \mapsto w_{\circ} u$ on Wmap saturated increasing chains in the Bruhat order to saturated decreasing chains. Our K_T -Chevalley formula easily implies the following two symmetries.

Corollary.
$$c_{u,w}^{\lambda,\mu} = (-1)^{\ell(u)-\ell(w)} c_{ww_{\circ},uw_{\circ}}^{w_{\circ}(\lambda),\mu}$$

[Brion] proved this for K(G/B) using an involved geometric argument.

New duality:

Corollary.
$$c_{u,w}^{\lambda,\mu} = (-1)^{\ell(u)-\ell(w)} c_{w_{\circ}w,w_{\circ}u}^{-\lambda,-w_{\circ}(\mu)}$$

Dual K_T -Chevalley formula

 \mathcal{I}_w – sheaf given by the exact sequence

$$0 \to \mathcal{I}_{X_w} \to \mathcal{O}_{X_w} \to \mathcal{O}_{\partial X_w} \to 0,$$

where $\partial X_w = \bigcup_{u < w} X_u$ – boundary of X_w

The classes $[\mathcal{I}_w]$, $w \in W$, form an R(T)-basis of $K_T(G/B)$ (studied by [Kostant-Kumar]).

$$[\mathcal{I}_w] = \sum_{u \le w} (-1)^{\ell(u)} [\mathcal{O}_u]$$

$$[\mathcal{O}_w] = \sum_{u \le w} (-1)^{\ell(u)} [\mathcal{I}_u]$$

(Möbius inversion on the Bruhat order)

Lemma.

$$[\mathcal{L}_{\lambda}] \cdot [\mathcal{I}_{u}] = \sum_{w \in W, \ \mu \in \Lambda} c_{u,w}^{-\lambda,-\mu} e^{\mu} [\mathcal{I}_{w}]$$

Our K_T -Chevalley formula immediately gives a rule for the expansion of $[\mathcal{L}_{\lambda}] \cdot [\mathcal{I}_u]$.

Idea of proof of K_T -Chevalley formula:

Let T_i be the Demazure operators. They act R(T)-linearly on $K_T(G/B)$. (In type A, these are the *isobaric divided differences operators.*) They satisfy Hecke algebra relations for q = 0. $(T_i^2 = T_i \text{ and the Coxeter relations})$

According to [Kostant, Kumar], for a reduced decomposition $w = s_{i_1} \cdots s_{i_l}$,

$$[\mathcal{O}_w] = T_{i_l} \cdots T_{i_1}([\mathcal{O}_1]).$$

In order to show that $\tilde{R}^{[\lambda]} = [\mathcal{L}_{\lambda}] \times$ (operator of multiplication by $[\mathcal{L}_{\lambda}]$), it is enough to show that the operators $\tilde{R}^{[\lambda]}$ satisfy the same commutation relations with T_i 's as the operators $[\mathcal{L}_{\lambda}] \times$ do. (Affine Hecke algebra relations.)

First, we give commutation relations for the operators R_{α} and T_i , then deduce the affine Hecke algebra relations for $\tilde{R}^{[\lambda]}$ and T_i . Q.E.D.

Quantum *K*-theory

Quantum Bruhat operators, for a root α ,

 $Q_{\alpha} : [\mathcal{O}_w] \mapsto \begin{cases} [\mathcal{O}_{ws_{\alpha}}] & \ell(ws_{\alpha}) = \ell(w) - 1\\ q^{\alpha^{\vee}}[\mathcal{O}_{ws_{\alpha}}] & \ell(ws_{\alpha}) = \ell(w) + 2 |\alpha^{\vee}| - 1\\ 0 & \text{otherwise} \end{cases}$ where $|\alpha^{\vee}| = (\rho, \alpha^{\vee})$ (height of coroot α^{\vee}), and $q^{\alpha^{\vee}} = q_1^{d_1} \cdots q_r^{d_r}$, for $\alpha^{\vee} = d_1 \alpha_1^{\vee} + \cdots + d_r \alpha_r^{\vee}$.

In [Brenti,Fomin,Postnikov], we proved that Q_{α} 's satisfy the Yang-Baxter equation. One can write the *quantum Chevalley formula* for the quantum cohomology $QH^*(G/B)$, using these operators.

[Lee] and [Givental,Lee] defined and study quantum K-theory QK(G/B). It involves certain K-invariants of Gromov-Witten type.

Conjecture. We obtain a Chevalley-type product formula for QK(G/B) if we replace operators B_{α} in our K-Chevalley formula with Q_{α} .