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AFFINE WEYL GROUPS IN K-THEORY AND
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ABSTRACT. We give an explicit combinatorial Chevalley-type formula for the
equivariant K-theory of generalized flag varieties G/P. The formula implies a
simple combinatorial model for the characters of the irreducible representations
of G and, more generally, for the Demazure characters. The construction is
given in terms of a certain R-matrix, that is, a collection of operators satisfying
the Yang-Baxter equation. It reduces to combinatorics of decompositions in
the affine Weyl group and enumeration of saturated chains in the Bruhat
order on the (nonaffine) Weyl group. The formula implies several symmetries
of coefficients in the equivariant K-theory. We derive a Pieri-type formula and
a dual Chevalley-type formula for this ring. The paper contains some other
applications and examples. Finally, we conjecture a Pieri-type formula for the

quantum K-theory of G/B. The proofs are completely combinatorial.
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1. INTRODUCTION

The Chevalley formula [Chev] from Schubert calculus expresses the products of
the classes of Schubert varieties with the classes of certain line bundles in the coho-
mology ring of the generalized flag variety G/B, where G is a complex semisimple
Lie group and B is a Borel subgroup. This formula implies a rule for products
of special Schubert classes with arbitrary Schubert classes, known as Monk’s rule
in type A. Fulton and Lascoux [FuLal extended this formula to the equivariant
Grothendieck ring K7 (SL,/B) of the classical flag variety, using combinatorics of
Young tableaux, cf. [Len] for another Monk-type formula in K (SL,,/B). Pittie and
Ram [PiRal extended the Chevalley formula to the equivariant Grothendieck ring
K1 (G/B) using LS-paths, which are special cases of Littelmann paths. However,
the Pittie-Ram formula is often hard to use for explicit calculations. It works for
dominant weights only and involves some nontrivial recursive procedures. In this
article, we present a simple nonrecursive combinatorial Chevalley-type formula for
products in the equivariant Grothendieck ring Kr(G/P), where P is a parabolic
subgroup in G. Our formula implies a nonnegative combinatorial model for the
characters of the irreducible representations of G and for the Demazure characters.
This model is more efficient computationally than other known models for charac-
ters, such as the Littelmann path model. Our formula easily explains two symme-
tries of Chevalley coefficients in the equivariant K-theory, clarifies their connection
with a Pieri-type formula in this ring, and implies positivity (or negativity) of these
coefficients. One of these symmetries was earlier derived by Brion [Brion| using a
nontrivial geometric argument. Our formula is based on a collection of operators
that satisfy the Yang-Baxter equation. Its proof is completely elementary. It does
not rely on any geometric arguments. It just uses combinatorics of the affine Weyl
group and some algebraic manipulations with R-matrices and Demazure operators.

Littelmann paths give a model for the characters of the irreducible representa-
tions V) of G. Littelmann [Lit1) [Lit2] showed that the characters can be described
by counting certain continuous paths in hz. These paths are constructed recursively
starting with an initial one, by using certain operators acting on them, which are
known as root operators. By making specific choices for the initial path, one can
obtain special cases which are described combinatorially. One such class of paths,
corresponding to a straight line initial path, is known as the class of Lakshmibai-
Seshadri paths (LS-paths). These paths were introduced before Littelmann’s work,
in the context of standard monomial theory [LaSe]. They have a nonrecursive
characterization in terms of the Bruhat order on the quotient W/W) of the corre-
sponding Weyl group W modulo the stabilizer W, of A. Recently, Gaussent and
Littelmann [GaLi], motivated by the study of Mirkovié-Vilonen cycles, defined an-
other combinatorial model for the irreducible characters of a complex semisimple
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Lie group. This model is based on LS-galleries, which are certain sequences of faces
of alcoves for the corresponding affine Weyl group.

A geometric application of LS-paths was given by Pittie and Ram [PiRal, who
used them to derive a Chevalley-type multiplication formula in the T-equivariant
K-theory of the generalized flag variety G/B. Let Kr(G/B) be the Grothendieck
ring of T-equivariant coherent sheaves on G/B. According to Kostant and Ku-
mar [KoKul, the ring K7 (G/B) is a free module over the representation ring R(T)
of the maximal torus, with basis given by the classes [O,], w € W, of structure
sheaves of Schubert varieties. Pittie and Ram showed that the basis expansion of
the product of [O,,] with the class [£,] of a line bundle, for a dominant weight A,
can be expressed as a nonnegative sum over certain special LS-paths. The fact that
the product in the Pittie-Ram formula expands as a nonnegative linear combina-
tion was also explained geometrically by Brion [Brion] and Mathieu [Maf]. The
coefficients in the Pittie-Ram formula were identified as certain characters by Lak-
shmibai and Littelmann [Lali] using geometry. Littelmann and Seshadri [LiSe]
showed that the Pittie-Ram formula is a consequence of standard monomial the-
ory [LLML. [LaSe [Lif3], and, furthermore, that it is almost equivalent to standard
monomial theory.

In this paper, we present an alternative simple Chevalley-type formula' for the
product of [O,] and [£)] in the equivariant Grothendieck ring Kr(G/P). The
formula is based on enumerating certain saturated chains in the Bruhat order on
the corresponding Weyl group W. This enumeration is determined by an alcove
path, which is a sequence of adjacent alcoves for the affine Weyl group Wog of
the Langland’s dual group GV. Alcove paths correspond to decompositions of
elements in the affine Weyl group into products of generators. Our Chevalley-type
formula is conveniently formulated in terms of a certain R-matriz, that is, in terms
of a collection of operators satisfying the Yang-Baxter equation. We express the
operator E* of multiplication by the class of a line bundle [£,] as a composition
R of elements of the R-matrix given by a certain alcove path. In order to prove
the formula, we simply verify that the operators R satisfy the same commutation
relations with the elementary Demazure operators T} as the operators E*.

Our equivariant K-theory Chevalley formula has the following nice features.

e The formula works for line bundles corresponding to arbitrary weights. The
Pittie-Ram formula works for dominant weights only. Note that several
applications require to work with nondominant weights.

e For dominant weights A, our formula implies a simple combinatorial model
for the characters of the irreducible representations V) and for the De-
mazure characters ch(V) ).

e The formula is equally simple for regular and nonregular weights. Note
that the definitions of LS-paths and LS-galleries are more complicated for
nonregular weights. There are some extra choices involved that add to their
computational complexity. Furthermore, the Pittie-Ram formula and stan-
dard monomial theory require Deodhar’s lift operators W/W, — W from
cosets modulo W), which are defined by a nontrivial recursive procedure
[Deo?]. The picture becomes even more complicated for G/P when, besides

INotational remark: We call a rule for [LA]-[Ow] a Chevalley-type formula and reserve the term
Pieri-type formula for a rule for products [Ow,s;] - [Ow] of special classes [Ow,s;] with arbitrary
classes [Oy]. Note that Pittie and Ram called their rule for [£)] - [Ow] a Pieri-Chevalley formula.
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W, there is another parabolic subgroup involved. In our construction, no
lift operators are needed, since we are working in W.

e Our formula easily implies a Pieri-type formula for products of the classes
[O.,] with the special classes for codimension one Schubert varieties. Indeed,
the special classes are expressed in terms of the classes of line bundles for
the negative fundamental weights. It is more difficult to apply the Pittie-
Ram formula for this computation, because the latter formula makes sense
for dominant weights only.

e The present model facilitates the study of certain symmetries of coefficients
in the equivariant K-theory, which is not easily carried out based on other
methods.

e Our formula immediately implies the dual Chevalley-type formula for prod-
ucts of [£,] with elements of the dual basis to {[O,] | w € W}.

e The independence of our formula from the choice of an alcove path follows
from the fact that the R-matrices used in the construction satisfy the Yang-
Baxter equation. No such explanation is available for the other models.

e The proof of the formula is completely algebraic/combinatorial.

As a preview of our main result, let us present here a formula for the product
[£2] - [Ow] of classes in the usual (nonequivariant) Grothendieck ring? K(G/B).
Let A be the affine Coxeter arrangement for the Langland’s dual group GV. The
regions of A, called alcoves, correspond to the elements of the affine Weyl group
Wag. Fix a weight A. Let m(¢) be a continuous path in h% that connects a point
7(0) inside the fundamental alcove with the point 7(1) = w(0) — A. Assume that
m(t) does not pass through pairwise intersections of hyperplanes in .A. As ¢t changes
from 0 to 1, the path 7(¢) crosses the hyperplanes Hy,...,H; € A. Let 3; be the
root perpendicular to H; with the opposite orientation to the path 7(t). We call a
sequence of roots (31, ..., ;) obtained in such a way a A-chain. Actually, A-chains
are in a bijective correspondence with decompositions of a certain element v_y of
the affine Weyl group into products v_y = s;, - - - 55, of the generators of Wg.

For positive roots a € ®T, let us define the Bruhat operators B, that act on the
Grothendieck ring K(G/B) by

[Ows,] if l(wsy) = L(w) — 1,
Bo i [Ou] — .
0 otherwise.
Also let B_, = —B,. These operators are specializations of the quantum Bruhat

operators from [BEP]. The operators 1 + B, satisfy the Yang-Baxter equation.

Theorem 1.1. (K-theory Chevalley formula) Let A be any weight (dominant or
nondominant, reqular or nonregular). Let (B1,...,05) be a A-chain. Then, for any
w € W, we have

[£2] - [Ow] = (14 Bg,) -+ (1 + B, )([Ow])
in the Grothendieck ring K(G/B).

The number of times a root « appears in the A-chain (fi,...,;) minus the
number of times —a appears in the A-chain equals (A, a"). Thus the linear part of
the expansion of (1+Bg,) - - - (1+Bp, ) is precisely ) . (X, &) By. This linear part

2The ring K(G/B) is not related to Russian security services.
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produces the classical Chevalley formula for products of classes in the cohomology
ring H*(G/B).

We say that a A-chain is reduced if it has minimal possible length. Reduced
A-chains correspond to reduced decompositions in the affine Weyl group. If A is
a dominant weight, then all roots in a reduced A-chain are positive. In this case,
Theorem [Tl involves only positive terms. If A is an anti-dominant weight, then all
roots in a reduced A-chain are negative. In this case, the sign of the coefficient of
[Ow] in [£2] - [0O4] equals (—1)4W=4®) " and Theorem [l gives a subtraction-free
expression for this coeflicient.

Let s1,...,s, be the system of simple reflections in the Weyl group (compati-
ble with our choice of Borel subgroup), let wy,...,w, be the corresponding set of
fundamental weights, and let w, be the longest element in W. The special classes
[Ow,s;] € K(G/B) for codimension one Schubert varieties can be expressed as
[Ow,s;] = 1—[L_,,]. Note that (81,..., ;) is a A-chain if and only if (—=5;,...,—f1)
is a (—A)-chain.

Corollary 1.2. (K-theory Pieri formula) Let us fix a simple reflection s;. Let
(B1,...,0B1) be an wi-chain. Then, for any w € W, we have

[Ouwes] - [Ow] = (1= (1 = Bg,) -+ (1 = Bg))([Ow])
in the Grothendieck ring K(G/B).

The special classes [O,,, 5;] generate the Grothendieck ring K (G/B). Thus Corol-
lary gives a complete characterization of the multiplicative structure of the
Grothendieck ring.

Our construction was developed independently of the LS-galleries of Gaussent
and Littelmann [Gali]. Learning about the latter prompted us to subsequently
reformulate the model for characters of V) that follows from our formula by using
admissible foldings of galleries. For regular weights, our admissible foldings are
similar (but not equivalent!) to LS-galleries. However, for nonregular weights,
these two models diverge. Our model is simpler and more efficient computationally
than the models based on LS-paths and LS-galleries. It eliminates several choices
that appear in the definitions of LS-galleries and LS-paths. Also it is harder to
work with sequences of lower dimensional faces of alcoves (LS-galleries) than with
reduced decompositions in the affine Weyl group (our model). Note that we cannot
discard the case of nonregular weights as something of less importance than regular
weights. The fundamental weights, which are highly nonregular, are, in a sense,
the most important weights for our purposes. Indeed, these weights appear in
Pieri-type product formulas. Also note that LS-galleries were not applied to the
Demazure characters and to the K-theoretic Chevalley formula.

In a forthcoming publication [LePd], we are planning to develop the combinato-
rial model introduced in this paper entirely within representation theory, describe
root operators, derive an explicit Littlewood-Richardson rule for decomposing ten-
sor products of irreducible representations, and investigate the relationship of this
model with the Littelmann path model.

The general outline of the paper is as follows. In Section B we review basic
notions related to roots systems and fix our notation. In Section Bl we present
some background on the Grothendieck ring K7(G/B). In Section Hl we discuss
the relationship between the Grothendieck ring and the Demazure characters. In
Section Bl we remind a few facts about affine Weyl groups. In particular, we show
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that decompositions of affine Weyl group elements correspond to sequences of ad-
jacent alcoves, which we call alcove paths. In Section [l we state our combinatorial
formula for products in equivariant K-theory, that is, our Kp-Chevalley formula.
As a corollary of the Kp-Chevalley formula, we obtain a combinatorial model for
the characters of the irreducible representations V) and for the Demazure charac-
ters. In Section [l we extend the Kp-Chevalley formula to equivariant K-theory of
G/P. In Section B we present several applications of our Kp-Chevalley formula.
We derive the Kp-Pieri formula for the product of an arbitrary class [O,,] with
a special class [O,,,s,]. We gave the dual Kr-Chevalley formula. Then we study
two symmetries of the coeflicients in the Kp-Chevalley formula. In the following
sections, we develop tools needed to reformulate our rule in a compact operator
notation and to prove this rule. In Section @, we discuss the Yang-Baxter equa-
tion. In Section [, we construct a certain R-matrix and show that it satisfies the
Yang-Baxter equation. In Section [l we derive commutation relations between
the elements of the R-matrix and the Demazure operators 7;. These commuta-
tion relations are the core of the proof of our formula. In Section [ we define
compositions R of elements of the R-matrix. We use tail-flips of alcove paths to
prove that the operators RN satisfy the same commutation relations with T} as
the operators E*. In Section [[J, we reformulate and prove our main result—the
Kp-Chevalley formula—using the R-matrix notation. We show that R coincides
with the operator E* of multiplication by [£,] in the Grothendieck ring Kr(G/B).
In Section A we use central points of alcoves to prove the equivalence of the two
formulations of our main result. In Sections[[H and [[6, we give several examples for
types A, B, C, and G4. In Section [[d, we conjecture a natural generalization of our
K-theory Pieri formula to quantum K-theory. In Appendix [[¥, we reformulate our
model for characters using admissible foldings of galleries and compare our model
with LS-galleries and LS-paths.

ACKNOWLEDGMENTS: We are indebted to Shrawan Kumar for several geometric
explanations and useful suggestions. We are grateful to V. Lakshmibai for inter-
esting discussions and thoughtful comments. We thank Allen Knutson, Yuan-Pin
Lee, and Andrei Zelevinsky for helpful remarks.

2. NOTATION

Let G be a connected, simply connected, simple complex Lie group. Fix a
Borel subgroup B and a maximal torus 7" such that G D B D T. Let h be the
corresponding Cartan subalgebra of the Lie algebra g of G. Let r be the rank of
the Cartan subalgebra f). Let ® C h* be the corresponding irreducible root system.
Let b C b* be the real span of the roots. Let ®* C @ be the set of positive
roots corresponding to our choice of B. Then ® is the disjoint union of ®+ and
&~ = —P". Let ay,...,a, € T be the corresponding simple roots. They form a
basis of h%. Let (A, ) denote the nondegenerate scalar product on b induced by
the Killing form. Given a root «, the corresponding coroot is oV := 2a/(c, ). The
collection of coroots @Y := {a" | @ € ®} forms the dual root system.

The Weyl group W C Aut(hy) of the Lie group G is generated by the reflections
Sq : bg — b, for a € @, given by

Sa i A= A= (N aY)a.



AFFINE WEYL GROUPS IN K-THEORY AND REPRESENTATION THEORY 7

In fact, the Weyl group W is generated by the simple reflections si1,..., s, corre-
sponding to the simple roots s; := s,,, subject to the Cozxeter relations:

(s))2>=1 and (s;s;)™7 =1 foranyi,je{l,...,r},

where m;; is half of the order of the dihedral subgroup generated by s; and s;.
An expression of a Weyl group element w as a product of generators w = s;, - - - s,
which has minimal length is called a reduced decomposition for w; its length £(w) =1
is called the length of w. The Weyl group contains a unique longest element w,
with maximal length ¢(w,) = |®T|. For w,w € W, we say that u covers w, and
write u > w, if w = usg, for some § € ®*, and ¢(u) = ¢(w) 4+ 1. The transitive
closure “>” of the relation “>” is called the Bruhat order on W.
The weight lattice A is given by

(2.1) A:={ ebi|(\aY)€Zfor any a € D}.

The weight lattice A is generated by the fundamental weights w1, ...,w,, which
are defined as the elements of the dual basis to the basis of simple coroots, i.e.,
(wi, o ) = d;5. The set AT of dominant weights is given by

AT = {Ae A (/\,av) >0 for any o € <I)+}.

Let p := w1 + - +w, = %Eﬁeﬁ B. The height of a coroot a¥ € ®V is
(p,a¥) =c14+ -+ if @Y = craf +--- + ¢, Since we assumed that ® is
irreducible, there is a unique highest coroot 8V € ®V that has maximal height. The

dual Cozeter number is hY := (p,0Y) + 1.

3. EQUIVARIANT K-THEORY OF GENERALIZED FLAG VARIETIES

In this section, we remind a few facts about the Grothendieck ring Kr(G/B).
For more details on the Grothendieck ring, we refer to Kostant and Kumar [KoKui,
see also Pittie and Ram [PiRal.

The generalized flag variety G/B is a smooth projective variety. It decomposes
into a disjoint union of Schubert cells X, := BwB/B indexed by elements w € W
of the Weyl group. The closures of Schubert cells X, := X2 are called Schubert
varieties. We have u > w in the Bruhat order (defined as above) if and only if
Xy D Xyw. Let Oy := Ox,, be the structure sheaf of the Schubert variety X,,.

Let Z[A] be the group algebra of the weight lattice A. It has a Z-basis of for-
mal exponents {e* | A € A} with multiplication e* - e# := e*#, ie., Z[A] =
Z[eT*1, ... e*¥r] is the algebra of Laurent polynomials in r variables. The group
of characters X = X (T) of the maximal torus 7' is isomorphic to the weight lat-
tice A. Tts group algebra Z[X] = R(T) is the representation ring of T. The rings
Z[A] and Z[X] are isomorphic. (However we will distinguish these two rings.)
Let us denote by 2* the element of Z[X] corresponding to e* € Z[A]. Thus
Z[X] = ZzFr, ... xFr]. Let Ly := G xp Cy be the line bundle over G/B
associated with the weight A, where B acts on G by right multiplications, and the B-
action on Cy = C is the one-dimensional representation with character z=* € Z[X].
(The character z=* of T extends to B by defining it to be identically one on the
commutator subgroup [B, B]).

Denote by K(G/B) the Grothendieck ring of coherent T-equivariant sheaves on
G/B. According to Kostant and Kumar [KoKu|, the Grothendieck ring K1 (G/B)
is a free Z[X]-module, and the classes [O,] € K7(G/B) of the structure sheaves
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O,, form its Z[X]-basis. The classes [£,] of the line bundles £ also span K1 (G/B)
as a Z[X]-module.

We now discuss the presentation of the Grothendieck ring K7(G/B) as a quotient
of Z[X|®Z[A]. The Weyl group W acts on the group algebra Z[A] by w(e*) := e,
Let Z[A]" be the subalgebra of W-invariant elements. The tensor product Z[X] ®
Z[A] is the algebra of Laurent polynomials in 27 variables 21, ... z“r e¥ ... e“r
with integer coefficients. Let i : Z[A] — Z[X] be the natural isomorphism given by
i(e}) := 2*. Let T be the ideal in Z[X] ® Z[A] generated by the following elements:

IT={((f)ol-1af|fezZA").
The Grothendieck ring Kr(G/B) is canonically isomorphic to the quotient ring
(3.1) K (G/B) ~ (Z|X] @ Z|A)/T.

The isomorphism is given by the Z[X]-linear map [£,] — e*, for A € A.

It is possible to express all classes [O,,] as Laurent polynomials in Z[X|®Z[A] by
choosing a representative of the class [01] and by applying Demazure operators, as
described below. The action of the Weyl group on Z[A] defined above is extended
Z[X]-linearly to Z[X] ® Z[A]. For i = 1,...,r, the elementary Demazure operator
T, : Z[X]| ® Z]A] — Z[X] ® Z[A] is the Z[X]-linear operator given by

f—e"sif
(3.2 1(f) = L2
J— e 2
Note that the numerator is always divisible by the denominator?, so the right-hand

side is a valid expression in the algebra Z[X]| ® Z[A]. One can verify directly from
the definition that the operators 7T; satisfy the following relations:

(3.3) T2 =T,
(3.4) (T, T;)™7 =1,
(3.5) Ti(fg) = f-Tilg), ifsi(f)=1F.

Equations B3) and ) imply that the operators T; give an action of the corre-
sponding Hecke algebra H, specialized at ¢ = 0, e.g., see [Hum)]. Equation (BI)
implies that the operators 7; preserve the ideal Z. Thus the elementary De-
mazure operators T; induce operators acting on the Grothendieck ring K1 (G/B) ~
(Z[X] ® Z[A])/Z, which will be denoted by the same symbols.

For a reduced decomposition w = s;, - --s;, € W, the Demazure operator T, is
defined as the following composition of elementary Demazure operators:

(3.6) Tp: =T, T

The Coxeter relations (B4l imply that the operator T, depends only on w, not on
the choice of a reduced decomposition. Equation @3] implies that an arbitrary
product T}, - -- T, reduces to T, for some w € W. Kostant and Kumar [KoKul]
showed that, for any w € W,

(3.7) [Ow] = Tyy=1([O1]).

For type A, the elementary Demazure operators T; are also called isobaric divided
difference operators. The polynomial representatives of the structure sheaves [O,]
obtained by applying these operators to a certain polynomial representative of [O1]
are the double Grothendieck polynomials of Lascoux and Schiitzenberger [LaSd].

3Check this for f=er.
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The product [£,] - [O,] in the Grothendieck ring K (G/B) can be written as a
finite sum

(38) (L0 = >0 e 2" [0l
weW, neA
where cﬁ% are some integer coefficients. We will call these coefficients Kr-Chevalley

coefficients, because they extend the coeflicients in the usual Chevalley formula, as
shown below in this section. In this paper, we present an explicit combinatorial
formula for %, see Theorems Elland 3Tl We will see that ¢4 = 0 unless w < u
in the Bruhat order, and that c;):g = 0x,u- If X is a dominant weight, then we will
see that all coeflicients cﬁ% are nonnegative. In this case, Pittie and Ram [PiRal
showed that ¢}, count certain LS-paths, cf. also Lakshmibai-Littelmann [LaLi] and
Littelmann-Seshadri [LiSe].

For a weight A, let E* : f +— e f be the operator of multiplication by the
exponent e* in the ring Z[X] ® Z[A]. The induced operator on Kr(G/B), which
will be denoted by the same symbol E*, acts as the operator of multiplication by
the class [£,] of a line bundle. It follows from the definitions that E* and T} satisfy
the following commutation relation:

E)\ _ Esi()\)
3.9 E T, =T, B5WM 4 — ——
( ) + 1— F—«
The quotient in this expression expands as the Laurent polynomial

B — g A—kas A—kas
= D e e N O
0<k<(N, o) (A ay)<k<O
Also, we have
(3.10) EMN[04]) = 2 [04].

Let H be the ring generated by the operators T1,...,T, and E*, A € A. Then
H is described by relations B3), @), and @), i.c., H is a certain degeneration
of the affine Hecke algebra. This follows from the fact that the elements T,,-1 E¥,
w e W, u € A, form a Z-basis of H. Indeed, according to the relations, the elements
T,-1E" span H. On the other hand, these elements are linearly independent,
because T,,-1 E*([O1]) = 2#[O,].

Using the commutation relation in ) repeatedly, we obtain, for any u € W
and A € A, the following identity in the ring H:

(3.11) B T,o= > eyl Ty EF,
weW, peA

for some integer coefficients cf;:g. Applying both sides of this expression to the

class [O1] and using (B7) and ([BI0), we deduce that the coefficients ¢4 in (BT
are equal to the Kp-Chevalley coefficients in (B3]).

The commutation relation BH) gives a recursive procedure for calculating the
product [£,]-[0,] in K7(G/B). In this paper, we present a simple nonrecursive rule
for this product. The proof of our rule is based on the following trivial observation,
which is implied by the above discussion.

Lemma 3.1. Let A be an algebra that contains Z[X], and let K = K1(G/B) ®z(x]
A. The action of the Demazure operators T; extends A-linearly to K. Suppose
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that R*, X € A, is a family of A-linear operators acting on the space K such that
relations B3) and BI0) hold with E* replaced by R*. Then the operator R
preserves Kr(G/B) C K and coincides with E* for all \.

Proof. The conditions imply that relation (1)) holds with E* replaced by R*.
Applying this expression to [01], we deduce that R*([0,]) = E*([O,]), for any
ueW. ]

Let us also mention another basis of Kr(G/B) studied by Kostant and Ku-
mar [KoKil, see also recent paper [GrRal by Griffeth and Ram. One can easily
check that the map given by ¢ : Ty — 1 —T;, i = 1,...,r, and ¢ : E* — E~*
is an automorphism of the ring H. In other words, the operators ¢; = 1 — Tj, for
i=1,...,r, satisfy relations @), (&2)), and (3 with 7T} replaced by ¢; and E
replaced by E~*. Thus one can correctly define the elements &, := ¢;, - - - &, € ﬂ,
for a reduced decomposition w = s;, ---s;, € W. For w € W, let [Z,] be the
element of Kp(G/B) given by

(3.12) [Zw] = e0-1([01]).

According to Kostant and Kumar [KoKul, the elements [Z,,], w € W, form a Z[X]-
basis of Kr(G/B). If follows from [KoKiul that the bases {[Z,] | w € W} and
{[Ow] | w € W} are related to each other, as follows:

T = S (1) @[0,)  and 0. = 3 (-1,
u<w u<w
The fact that these two relations are equivalent to each other is basically the state-
ment of Verma’s result [Ver] about Mébius inversion on the Bruhat order.

The element [Z,,] can be described geometrically as the class of the sheaf Z,, =
Ix, given by the exact sequence 0 — Zx, — Ox, — Opx, — 0, where 0X,, =
Uu<w Xu is the boundary of the Schubert variety X,,. Brion and Lakshmibai [BrLal
showed that the classes [Z,,] form the dual basis to {[O,] | w € W} with respect to
the natural intersection pairing in K-theory.

Applying the above involution ¥ to both sides of ([BI1l), we obtain

- _ 2 : A, —
E Eu—1 = C%ﬁ) Ew—1 E7H,
weW, neA

Then applying both sides of this relation to [O1], we immediately deduce the fol-
lowing dual form of ([BF)

(3.13) LT = ) abha [T,
weW, neA

where ;% are the same Kp-Chevalley coefficients as those in (8) and BIT).
Note that relations (B3), (), and @) in the algebra  are equivalent to the
relations obtained from them by reversing the order of all terms. This symmetry

of the relations implies that the expression
(3.14) T,E*= > eyl E'T,
weW, peA

has the same Kp-Chevalley coefficients cﬁ:’u‘].
The (nonequivariant) Grothendieck ring K(G/B) of coherent sheaves on G/B
can be obtained by the specialization z# — 1, for all y, i.e., by ignoring all exponents
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x# in equivariant K-theory. This ring has a Z-basis of the classes [O,,] of the
structure sheaves O,,, w € W. By a slight abuse of notation, we will use the same
symbols [O,,] and [£,] for classes in K(G/B) as in equivariant K-theory.

Let us also recall the way in which Schubert calculus in cohomology can be re-
covered from K-theory. Let H*(G/B) := H*(G/B,Q) be the cohomology ring of
G/B with rational coefficients. It has a linear basis of classes of Schubert vari-
eties [X,], w € W, called Schubert classes. The cohomology ring is 2Z-graded by
deg([Xw]) = 2(f(wo) — £(w)). Let by C h* be the Q-span of the weight lattice A,
and let Sym(h(a) be its symmetric algebra, i.e., the ring of polynomials on hg. The
classical Borel theorem says that the cohomology ring H*(G/B) is isomorphic to
the following quotient of the symmetric algebra:

H*(G/B) ~ Sym(bg)/ T,

where J := (f € Sym(h(a)w | £(0) =0) is the ideal generated by W-invariant
polynomials without constant term. The isomorphism identifies the Chern class
[A\] € H?(G/B) of the line bundle £, with the coset of A modulo J. The product
of [A\] and a Schubert class [X,] in the cohomology ring is given by the following
classical formula due to Chevalley [Chevl:

(3.15) A - [Xu] = > A oY) [Xus. |-

a€dt, l(usq)=~L(u)—1
The Chern character is the ring isomorphism ChCh : K(G/B) ® Q — H*(G/B)
that sends the class e* = [£)] € K(G/B) of the line bundle £ to exp[)] :=
1+ A+ [A]?/2! +--- € H*(G/B). Then

ChCh([Oy)]) = [X4w] + higher degree terms.

This shows that the Chevalley formula ([BI3) for the product [A]-[X,] in H*(G/B)
is obtained from the expression [£y] - [Oy] — [O.] in K7(G/B) by expanding it us-
ing (B, ignoring the exponents z*, applying the Chern character map, and then
extracting terms of degree deg([X,])+2. In other words, for A € A, u € W, o € *
such that £(us,) = £(u) — 1, the coefficient in the Chevalley formula equals

(3.16) (\a¥)y=> et .

HEA

A rule for computing the coeflicients c;)% can be thought of as a generalization of
the Chevalley formula to T-equivariant K-theory.

Remark 3.2. In fact, Pittie and Ram [PiRal worked in a more general setup than
the Grothendieck ring K7(G/B). Their construction implies that the same Kp-
Chevalley coefficients cﬁ:g as in ([BX) give the product of classes of £y and O, in
the K-theory of a G/B-bundle over a smooth base. Thus, the results of the present
paper apply to this more general case as well.

4. DEMAZURE CHARACTERS

Lakshmibai-Littelmann [Lali] and Littelmann-Seshadri |[LiSe] indicated that the
product [£,] - [O,] in the Grothendieck ring K7 (G/B) is related to representa-
tion theory. This relation is also implicit in the Pittie-Ram formula [PiRa]. Ku-
mar [Kuml pointed out that the Demazure characters can be expressed in terms of
the Kp-Chevalley coeflicients, as shown below.
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For a dominant weight A € AT, let V3 denote the finite dimensional irreducible
representation of the Lie group G with highest weight A\. For A € AT and w € W,
the Demazure module V3, is the B-module that is dual to the space of global
sections of the line bundle £y on the Schubert variety X,,:

(4.1) Vaw = HY (X, L2)*.

For the longest Weyl group element w = w,, the space Vy ., = H°(G/B, L))* has
the structure of a G-module. The classical Borel- Weil theorem says that V) ,,, is
isomorphic to the irreducible G-module V. The formal characters of these modules,
called Demazure characters, are given by ch(Viw) = 32 ,cp Maw(p) e’ € Z[A],
where my ,(p) is the multiplicity of the weight p in Vi .. They generalize the
characters of the irreducible representations ch(Vy) = ch(Viw,). The Demazure
character formula [Dem] says that the character ch(V) ) is given by

(4.2) ch(Vaw) = Tw(e),
where Ty, is the Demazure operator (B8]).

Lemma 4.1. For any A € At and u € W, the Demazure character ch(Vy.,) can
be expressed in terms of the Kp-Chevalley coefficients cf;;g in B3 as follows:

ch(Vau) = Z cﬁ:we”.
weW, peA

In particular, the character of the irreducible representation Vy of G is equal to

A,
ch(Vy) = g Clty e
weW, peA

Proof. Applying both sides of identity BI4) to [O,,] = 1 and using T3,(1) = 1, we
obtain

T.(e) = Z Ci,ﬁ) et

weW, neA

which, together with the Demazure character formula ([E2]), proves the lemma. O

Let us also give a geometric argument that proves Lemma Bl It is implicit
in [Lali and [LiSe] and was reported to us by Kumar [Kuml|. Let x : Kr(G/B) —
Z[A] be the Euler characteristic map given by

X : [Vl Y (1) ch(H'(G/B,V)"),
i>0

for a coherent sheaf V on G/B. For a dominant weight A, the Euler characteristic
X([£2]-]O4]) is equal to the Demazure character ch(Vy ). Indeed, this follows from
&), the fact that

HY(G/B, L\ ® Oy) = H (Xu, L)),
and the vanishing of the cohomologies H*(X,, L)), for i > 1. In particular, we

have x([Oy]) = 1, for any w € W. Thus x(a#[O,]) = e. Applying the Euler
characteristic map x to both sides of [B8), we obtain Lemma EIl
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5. AFFINE WEYL GROUPS

In this section, we remind a few basic facts about the affine Weyl group and
alcoves, see Humphreys [Huml Chaper 4] for more details. Then we define A-chains
that will be used in the rest of the paper.

Let Wag be the affine Weyl group for the Langland’s dual group GV. The affine
Weyl group Wa,g is generated by the affine reflections sq 1 : b — by, for a € @
and k € Z, that reflect the space hi with respect to the affine hyperplanes

(5.1) Hop:={Nebr| (N aY) =k}
Explicitly, the affine reflection s, is given by
Sak i A= sa(N) +ha=X—((\a")—k)a.

The hyperplanes H, j divide the real vector space hy into open regions, called
alcoves. Each alcove A is given by inequalities of the form

A={Xebi |ma <N a)<mg+1forallae @™},

where mq, = mq(A), a € @, are some integers.
A proof of the following important property of the affine Weyl group can be
found, e.g., in [Huml Chapter 4].

Lemma 5.1. The affine Weyl group Wag acts simply transitively on the collection
of all alcoves.

The fundamental alcove A, is given by
Ao :i={Aebhr|0< (\aY)<1forallaedt}.

Lemma Bl implies that, for any alcove A, there exists a unique element vy of
the affine Weyl group W,g such that vs(A4,) = A. Hence the map A — vy is a
one-to-one correspondence between alcoves and elements of the affine Weyl group.

Recall that ¥ € ®V is the highest coroot. Let § € ®T be the corresponding
root, and let ag := —60. The fundamental alcove A, is, in fact, the simplex given
by

(5.2) Ao ={Aebr|0< (Na)) fori=1,...,7, and (\,0") < 1},

Lemma [Tl also implies that the affine Weyl group is generated by the set of reflec-
tions sg, 81, - - -, S with respect to the walls of the fundamental alcove A, where
50 = Sag,—1 and S1,...,s, € W are the simple reflections s; = sq, 0. As before, a
decomposition v = s;, ---8;, € Wag is called reduced if it has minimal length; its
length £(v) =1 is called the length of v.

Like the Weyl group, the affine Weyl group W,g is a Coxeter group, i.e., it is
described by the relations

(5.3) (si)>=1 and (s;s;)™7 =1, foranyi,je€{0,...,7},

where m;; is half of the order of the dihedral subgroup generated by s; and s;.
We say that two alcoves A and B are adjacent if B is obtained by an affine

reflection of A with respect to one of its walls. In other words, two alcoves are

adjacent if they are distinct and have a common wall. For a pair of adjacent

alcoves, let us write A 2, B if the common wall of A and B is of the form H, 8.k
and the root § € ® points in the direction from A to B. By the definition, all
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alcoves that are adjacent to the fundamental alcove A, are obtained from A, by
the reflections sq, - - - , 8, and A, —% s;(As).

Definition 5.2. An alcove path is a sequence of alcoves (Ag, A1, ..., A;) such that
Aj;_1 and A; are adjacent, for j = 1,...,l. Let us say that an alcove path is reduced
if it has minimal length | among all alcove paths from Ag to A;.

Let v — ¥ be the homomorphism W, — W defined by ignoring the affine
translation. In other words, 5,1 = 5o € W.

The following lemma, which is essentially well-known, summarizes some proper-
ties of decompositions in affine Weyl groups, cf. [Huml.

Lemma 5.3. Let v be any element of Wag, and let A = v(As) be the correspond-
ing alcove. Then the decompositions v = $;, ---8; of v (reduced or not) as a
product of generators in Wog are in one-to-one correspondence with alcove paths
Ap A Ay s S Ay from the fundamental alcove Ay = Ao to Ay = A. This
correspondence is explicitly given by Aj = s, -+ 54,(Ao), for j =0,...,1; and the
roots (1, ..., 0 are given by

B =i, B2 =35 (quy), B3 =58, (ig)s--s Bi =5y -5, (o).

Let r; € Wag denote the affine reflection with respect to the common wall of the

alcoves Aj_q1 and A;, for j = 1,...,1. Then the affine reflections r,...,r; are
given by
T1= Siy, T2 = 8iy8iySiys T3 = Siy SigSigSinSiys -y VL= Siy ** Si, " Sy

We have 7; = sg, and v = s;, -+ 8;, =1 ---r1. Moreover, the following claims are
equivalent:

(a) v =84 -8 is a reduced decomposition;

(b) (Ao, A1,...,A;) is a reduced alcove path;

(c) all affine reflections 1, ..., are distinct;

(d) Bi # —pBj, for any i and j.
Finally, for any a € T, we have mqo(A) = #{j | B; = —a} — #{j | B; = a}.

Proof. Let v = s, ---s; be a decomposition and A; = s;, ---s;,(As), for j =
0,...,0. Then Ay = A, and A; = v(A,) = A. Applying s;, ---s;;,_, to the adjacent

pair A, i 5i;(As), we deduce that the pair A;_; 4 Aj; is adjacent as well,
where 3; = 5;, ---5;,_,(a;). Thus (Ao,...,A;) is an alcove path from A, to A.
The reflection s;; switches the alcoves A, and s;,(A,). Thus the reflection r; =
8iy *++8i; + - 84, is the reflection with respect to the common wall of A; 1 and A;.

On the other hand, let (Ay,...,A;) be any alcove path from A, to A, and
let r; be the reflection with respect to the common wall of A;_; and A;, for
j=1,....0. Then A; = rj---r1(As). Applying (rj_1---r1)"t = ri---rj_1 to
the adjacent pair (A;_1,A;), we obtain the adjacent pair (Ao, s(As)), where s =
r1---7j-177j—1 - -r1. Thus s should be a reflection with respect to one of the walls
of A,. Thus there are i1,...,4 € {0,...,7} such that v ---rj_17jrj_1---11 = 54,
for j =1,...,1. The affine Weyl group element s;, ---s;, = r;---r1 maps A, to A,
and is equal to v.

(a) < (b). This is clear, because a decomposition and the corresponding alcove
path have the same length.
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(b) & (c). The fact that all affine reflections 1, ..., are distinct for a reduced
decomposition is given in [Huml Lemma 4.5]. On the other hand, the length [ of
any alcove path should be at least the number of hyperplanes of the form H, j that
separate Ag and A;. If all affine reflections r1,...,r are distinct, then the path
never crosses the same hyperplane twice, and, thus, its length equals the number
of hyperplanes that separate Ag and A;.

(c) & (d). If B; = —B; = a, then the alcove path crosses two parallel hyperplanes
H,  and H,, in opposite directions. It follows that the path crosses one of these
hyperplanes twice, and, thus, the affine reflections 71, ..., r; are not distinct. On the
other hand, if r1, ..., r; are not distinct, then the path crosses the same hyperplane
more than once. It follows that the path should cross this hyperplane in opposite
directions. Thus 3; = —f; for some ¢ and j.

The last claim follows from the fact that, each time the alcove path crosses a
hyperplane of the form H, x, a« € &, in positive (respectively negative) direction,
the number m,, increases (respectively decreases) by 1, and all other mg’s do not
change. (|

The affine translations by weights preserve the set of affine hyperplanes H, ,
cf. 1) and @&J). It follows that these affine translations map alcoves to alcoves.
Let Ay = A, + A be the alcove obtained by the affine translation of the fundamental
alcove A, by a weight A € A. Let vy = va, be the corresponding element of W,g,
i.e,. vy is defined by vy(As) = Ax. Note that the element vy may not be an affine
translation itself.

Definition 5.4. Let A be a weight, and let v_x = s;, - - - 5;, be any decomposition,
reduced or not, of v_) as a product of generators of W,g. Let us say that the
A-chain of roots associated with this decomposition is the sequence (01, ..., 5;) of
the roots in ® given by

B =ai, B2 =35i, (i), Bs=5i80,(y), -, B =545, (aq,).
Sometimes we will abbreviate “A-chain of roots” as, simply, “A-chain.” Let us also

say that the A-chain of reflections associated with the above decomposition for v_
is the sequence (71, ...,7;) of the affine reflections in W,g given by

T1 = Siyy T2 = 8i18i3 84y, T3 = Si18i38i38i95415 -+ -y TU = Siy """ Sip " °

r 87;1 °
In particular, 7; = sg,.

According to Lemma B3 we can equivalently define a A-chain as a sequence of
roots (B1,...,0) such that there exists an alcove path Ay s S A; from
Apg = Ao, to Ay = A_ with edges labeled by the roots —f1,...,—0;. The j-th
element of the corresponding A-chain of reflections (71, ..., ;) is the affine reflection
r; with respect to the common walls of the alcoves A;_; and A;, for j =1,...,L

Finally, we say that a A-chain is reduced if it is associated with a reduced de-

composition for v_y.

Remark 5.5. If A 25 Bis a pair of adjacent alcoves, then (A + \) 2, (B + ),
for any affine translation of the alcoves by the weight A. Thus, a translation of an
alcove path by a weight A is an alcove path labeled by the same sequence of roots.
For a A-chain of roots (B1,...,0), let us translate the corresponding alcove path

A, iz St A_» by the weight A, and then reverse its direction. We obtain the
alcove path A, P, 0P A associated with the (—=A)-chain (=0, ..., —f1).



16 CRISTIAN LENART AND ALEXANDER POSTNIKOV

6. THE Kp-CHEVALLEY FORMULA

In this section, we formulate our main result and give its several specializations
and applications to characters.

Theorem 6.1. (Kp-Chevalley formula) Fiz any weight \. Let (r1,...,7) and
(B1,.-.,01) be the \-chain of reflections and the \-chain of roots associated with
a decomposition v_y = Si; ---8;, € Wag, which may or may not be reduced. Let
u,w € W, and u € A. Then the Kp-Chevalley coefficient cﬁ:ﬁ}, i.e., the coefficient

of x# [Oy] in the expansion of the product [Ly] - [Oy], can be expressed as follows:

(6.1) cﬁ% = Z(_l)n(J) 7
J

where the summation is over all subsets J = {j1 < -+ < js} of {1,...,1} satisfying
the following conditions:

(a) u>ufTj, >UT)Tj, > >UTj, Ty, - Tj, = W is a saturated decreasing chain

from u to w in the Bruhat order on the Weyl group W

(b) —p=wrj i, (=A),

and n(J) is the number of negative roots in {B;,, ..., 05, }

In Section [[3 we reformulate this theorem in a compact form and then prove
it, using a certain R-matrix. In Sections [0 and [[8, we give several examples that
illustrate this theorem.

Lemma implies the following statement.

Lemma 6.2. Let (f1,...,0) be a reduced A-chain of roots. Let a € ® be a root
such that (A, ") > 0. Then #{i | i = a} = (\,a") and #{i | B = —a} = 0.

In particular, if X is a dominant weight, then all roots B1,...,0; are positive.
Also, if X is an anti-dominant weight, that is, —\ € AT, then all roots B1,...,05
are negative.

In the special cases corresponding to dominant and anti-dominant weights A,
Theorem 61l can be reformulated in a more explicit way. In these cases, for reduced
A-chains, Theorem gives a manifestly positive formula, which is not the case in
general.

Corollary 6.3. Consider the setup in Theorem Bl Assume that v_y = s;, -+ $;
is a reduced decomposition in Wag.

If X is a dominant weight, then c;)% equals the number of subsets J C {1,...,1}
that satisfy conditions (a) and (b) in Theorem Bl

If X is an anti-dominant weight, then (—1))=¢w) cﬁ:{‘v equals the number of
subsets J C {1,...,1} that satisfy conditions (a) and (b) in Theorem B

1

Proof. For a dominant weight A, all roots 31, ..., 3; are positive; thus n(J) = 0.
For an anti-dominant weight A, all roots (31, ..., 3; are negative; thus n(J) = |J| =
L(u) — L(w).

Theorem B specializes to following rule for products in the (nonequivariant)
Grothendieck ring K (G/B).

Corollary 6.4. The coefficient c;, ,, of [Ouw] in the product [L)] - [Oy] of classes
in K(G/B) has the same combinatorial description as in Theorem Bl except that
condition (b) on the weights involved is dropped.

O
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Proof. We have ¢, = O

A1
HEA Cu,w'

Theorem implies the following combinatorial model for the Demazure char-
acters ch(Vy ) and, in particular, for the characters ch(Vy) of the irreducible rep-
resentations V) of the Lie group G.

Corollary 6.5. Let A be a dominant weight, let w € W, and let (r1,...,7) be a
reduced \-chain of reflections. Then the Demazure character ch(Vy ) is equal to
the sum

ch(Vau) = Z e wrin s (ZA)
J

over all subsets J = {j1 < --- <js} C{1,...,1} such that
’UJ>U’FJ‘1 >u77j177j2 >"'>u7:jl’l:j2 .'.fjs
is a saturated decreasing chain in the Bruhat order on the Weyl group W.

Proof. Apply Corollary and Lemma ET1 O

We can slightly simplify the formula for the characters ch(Vy) = ch(Vi w,) of
the irreducible representations of G, as follows.

Corollary 6.6. Consider the setup in Corollary BH We have
ch(Vy) = Z e i Tis (ZA)
J

where the summation is over all subsets J = {j1 < --- < js} C{1,...,1l} such that
L<ry, <TjTj, <o <TjTjy Ty,
is a saturated increasing chain in the Bruhat order on the Weyl group W.

Proof. Multiplying elements in a decreasing chain by w, on the left results in an
increasing chain in Bruhat order. On the other hand, we can remove w, from the
exponent because the character ch(Vy) is W-invariant. (]

In the rest of this section, we show how to construct A-chains of reflections
(r1,...,7) and A-chains of roots (B1,...,0). Clearly, there are many possible
choices.

Let us fix an arbitrary weight A. Let « : [0,1] — bj be a sufficiently generic
continuous path such that 7(0) € A, and 7(1) € A_,. Here “sufficiently generic”
means that the path m does not cross any face of an alcove of codimension 2 or
higher. For example, the path 7 : ¢t — —t A + ~, where v is a generic point in
A,, will suffice. Suppose that the path 7 passes through the sequence of alcoves
A, ..., A_y ast varies from 0 to 1. This sequence is an alcove path. Let Hy, ..., H;
be the affine hyperplanes of the form H, j that the path 7 crosses as ¢ varies from
0 to 1. According to Lemma B3 the sequence (rq,...,r;) of affine reflections with
respect to Hy, ..., H; is a A-chain of reflections.

In order to make our formula completely combinatorial, we present one particular
choice for a A-chain of reflections and the corresponding A-chain of roots. The
construction depends on the choice of a total order a; < --- < «; on the simple
roots in ®. Suppose that 7 = 7. : [0,1] — b5 is the path given by

Te it —tA+ew +2wo+ - +ewy,
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where ¢ is a sufficiently small positive real number. Let R = Ry C Wag be the
set of affine reflections with respect to affine hyperplanes H, ; that separate the
alcoves A, and A_ . This set is given by

{Sak |0>=k>—-(N\aY)} i (A\aY)>0,
R=Rr= J {50k | 0<k<(N\aY)} if (N aY)<O0,
agdt 0 if (\,a¥)=0.

For any s, € R, a € @1, the path m. crosses the affine hyperplane H, ; at
the point t = ta, = (A, a¥) "=k + > ;_, (w;,a")e’). Note that (A, o) # 0, for
Sak € R. Let h: R — R""! be the map given by

(6.2) hisar— (N aY) Tt (=k (wi,aY), ..., (W),

for any sa € R with @ € ®*. Then, for sufficiently small ¢ > 0, we have
tak < to g if and only if h(sq,r) is less than h(se k) in the lexicographic order
on R™™!. We claim that the map h is injective. Indeed, if h(sa,x) = h(Sa/ k'), then
a = o/. Otherwise, the root system ®Y would contain two proportional positive
coroots oV # (a’)V, which is not possible. Also, the fact that a = o’ implies that
k=Fk.
Let b : {affine reflections} — ® be the map given by
a ifk<0and ac ®T,
b:sqr+— .
' —a ifk>0and o € ®F.
We obtain the following result by using Lemma

Proposition 6.7. Let R = {r; < ro < --- < 1} be the total order on the set R
such that h(ry) < h(rz) < --- < h(r;) in the lezicographic order on R"*1. Then
(ri,...,m1) is the A-chain of reflections and (B1,...,0) = (b(r1),...,b(r1)) is the

A-chain of roots associated with a certain reduced decomposition of v_y.

Example [[6.7] illustrates this proposition.

7. GENERALIZATION TO G/P

Let P be a parabolic subgroup in G such that P O B. In this section, we show
that the Kp-Chevalley formula can be easily extended to equivariant K-theory of
the generalized partial flag variety G/P.

Let Ap be the subset of the simple roots associated with the parabolic subgroup
P. Let ®p C ® be the set of roots that can be written as sums of roots in Ap, and
let <I>JIS = ®pN®T. Then ®p is a root system itself, with the Weyl group Wp C W
generated by the simple reflections s;, for a; € Ap. Each coset w = wWp in
W/Wp has a unique representative of maximal length. Let us denote the set of
maximal coset representatives by W < W, and let us identify it with W/Wp.
The Bruhat order on W induces the Bruhat order on W¥ ~ W/Wp. According to
Deodhar [Deol], the covering relations in W are of the form u>w, where w = usg,
for some 8 € &+ \ &%, and £(u) = £(w) + 1. In particular, every covering relation
in WP is a covering relation in the Bruhat order on W.

The generalized partial flag variety G/P decomposes into Schubert cells X, =
BwP/P indexed by w € W/Wp. Their closures X, := Xg are called Schubert
varieties. Let OF = Ox,, w € W/Wp, be the structure sheaf of the Schubert
variety X5. If A is a weight satisfying (A, 8) = 0, for all 8 in Ap (or, equivalently,
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Wp C Wy, where W), is the stabilizer of ), then \ determines a character of P, and
so a line bundle £ := G xp Cy on G/P. Let [OF] and [LY] be the corresponding
classes in K7(G/P). Then the classes [OF] form a Z[X]-basis of Kr(G/P), and
the classes [£1] span K7(G/P) over Z[X].

The equivariant K-theory of G/P can be recovered from K (G/B), as stated in
[KoKu]. We have the canonical projection 7p : G/B — G/P. This determines an
injective Z[X|-linear homomorphism 7} : Kr(G/P) — Kr(G/B). Moreover, the
image of this map, with which K7 (G/P) can be identified, consists precisely of the
Wp-invariants in Kp(G/B). It is straightforward to show that

(7.1) mp([05]) = [Ou], and 7p([L3]) = [£4],

where w € W7 is the maximal coset representative of w € W/Wp, and the weight
A is such that Wp C W,.

Let us define the integer coeflicients 02:‘7}], for u,w € W/Wp and A\, u € A, with
Wp C Wy, by the following expansion of the product in Kp(G/P):
(72) o= Y. ket [0F).

U,

weW/Wp, ueA

Our combinatorial Chevalley-type formula for K7(G/B) can be generalized to
K1 (G/P), as follows.

Corollary 7.1. Let u,w € WF be the mazimal coset representatives of u,w €
W/Wp, and let A\, € A such that Wp C Wy. Then we have cg:ﬁg = M where

U, W

ekt is the Kp-Chevalley coefficient for Kp(G/B), which have the combinatorial
description given in Theorem Bl  Moreover, if we work with reduced \-chains,
then all the elements of the corresponding saturated chains in the Bruhat order lie

in WP,

Proof. The first part of the proof is immediate by applying the map 7% to both
sides of (L2), and by using ([Tl). The second statement follows from the fact that,
given the choice of A, we have (X, 3Y) = 0, for all 8in ®p. Indeed, by LemmaE3 a
reduced A-chain of roots does not contain any roots in ® p. Therefore, the conclusion
follows from the above description of the Bruhat order on W7, O

8. APPLICATIONS: Kp-PIERI FORMULA AND DUALITY FORMULAS

In this section, we present several applications of our Kp-Chevalley formula.
First, we give a rule for products [O,,s,] - [Ou], which we call the Kr-Pieri formula.
We also give the dual Kr-Chevalley formula for products [£]-[Z,]. Then we derive
two duality formulas for the Kp-Chevalley coefficients. The first one has been
already stated for K (G/B), in a slightly imprecise way, by Brion in [Brionl, Theorem
4], and proved using some fairly involved geometric arguments. We present a concise
combinatorial proof, based on our Kp-Chevalley formula. The two dualities came
from the two involutions w — ww, and w — wew on W. Our Kp-Chevalley formula
is symmetric with respect to these involutions, because they map increasing chains
in the Bruhat order to decreasing chains.

Let us call the classes [O,,s,] € Kr(G/B) of structure sheaves of codimension
one Schubert varieties X, s, the special classes.
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Lemma 8.1. (a) [Brion] For a simple reflection s;, we have
[Ow,s] =1 - xwo(wi)[ﬁfwi]

in the Grothendieck ring Kr(G/B).
(b) The special classes [Ow,s;], © = 1,...,7, generate the Grothendieck ring
Kr(G/B) as an algebra over Z[X].

Brion proved that [Oy,s,] = 1 — [£_y,] in K(G/B) using a simple geometric
argument based on the exact sheaf sequence 0 — L_.,, — Og/p — Ouy,s; — 0.
Brion also mentioned that this argument extends to T-equivariant K-theory.

Proof. (a) Let us apply Theorem BJl for v = w, and A = —w;. Every satu-
rated chain in the Bruhat order decreasing from w, should start with a simple
reflection. For a reduced (—w;)-chain of reflections (r1,...,7), exactly one of
the reflections ,...,7; is simple. Namely, 7, = s; and, moreover, r; = sq, 1.
Thus the expansion of the product [£_.,] - [Ow,] consists of the two terms corre-
sponding to the subsets J = () and J = {I}. This expansion is [L_,,] - [Ow,] =
z7 W) [0,,. ] — 2= @i)[0,, ] Since [O,,] = 1, we obtain the required identity.

(b) Let us identify K7 (G/B) with the quotient in ([BI). There is a finite set D
of exponents e* that spans K7 (G/B) as a Z[X]-module. Indeed, we can take all
exponents in some representatives for the classes [O,] in Z[X]® Z[A]. For a weight
A € A, the exponent e* is an invertible element in K7(G/B); and, thus, the set
e*D = {eM*H | et € D} also spans K7(G/B). For a sufficiently large anti-dominant
weight ), all exponents in the set e*D correspond to anti-dominant weights. On
the other hand, according to (a), we have e~ = 2= %) (1 — [0, ]); thus, all
classes e/ = [L,], for anti-dominant weights p, can be expressed in terms of the
special classes [Oy,s;]. This implies the statement. O

The second part of Corollary B3 for A = —w;, and Lemma BT a) imply the fol-
lowing combinatorial rule for products of the special classes with the basis elements
in Kr(G/B).

Corollary 8.2. (Kp-Pieri formula) Fiz a simple reflection s;, and let (r1,...,7)
be a reduced (—w;)-chain of reflections. Then, for any u € W, we have

[Ouw,s;] - [Ou] = (1 - xwo(%)_u(wi)) [Ou] + Z(_l)m_l z)) [Ow(,])],
J

where the sum is over nonempty subsets J = {ji,...,js} in {1,...,1} such that
US> UT) >UTj T, > > Uty 7y, - Tj, = w is a saturated decreasing chain in the
Bruhat order from u to w = w(J), and v(J) = wo(w;) —urj, -+ 7;, (w;).

Since the special classes [O,,, 5,] generate the Grothendieck ring Kr(G/B), Corol-
lary completely characterizes the multiplicative structure of this ring.

Remark 8.3. In the equivariant case, the expansion of [O,,s,] - [Oy] contains the
term [O,] with a nonzero coefficient. This term vanishes in the nonequivariant
case of K(G/B). A similar phenomenon happens in the Pieri-type formula for
equivariant cohomology, which can be derived from Corollary B2

Recall that the classes [Z,,], w € W, given by BIZ) form the dual basis to
{[Ow] | w € W} with respect to the natural pairing in K-theory. Define the dual
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Kp-Chevalley coefficients d)*, for u,w € W, A\, u € A, by the expansion

(L [Z]= ), dyliat[Tu).
weW, neL
Corollary 8.4. (dual Kp-Chevalley formula) The dual Kp-Chevalley coefficients
are related to the Kp-Chevalley coefficients as dﬁ:ﬁ} = c;ﬁ;’“. Thus Theorem B

provides a combinatorial description for the coefficients df;:%.
Proof. Follows from BI3)). O

Remark 8.5. In a recent paper?, Griffeth and Ram [GrRal provided more details
of the proof of the Pittie-Ram formula and gave a dual Kp-Chevalley formula, for
dominant weights A, using LS-paths. They also derived Lemma BIla) above and
Theorem below, for dominant A. Note that our dual Kp-Chevalley formula is
just the usual Kp-Chevalley formula (Theorem Bl) with A and p replaced by —A
and —p. Since the Pittie-Ram formula does not work for nondominant weights,
Griffeth and Ram had to derive its dual version separately. The symmetry between
the Pittie-Ram formula and its dual version given in [GrRa] is not so transparent as
the symmetry in our construction. Actually, Griffeth and Ram gave four different
formulas for the products [£*]-[O4], [£7][Ow], [£7°MN]-[O], and [Ou, s,]-[Ow], for
a dominant weight A, using LS-paths. From our point of view, these four products
are given by various specializations of the Kp-Chevalley formula, for arbitrary .

Let us now discuss symmetries of the Kp-Chevalley coefficients. In order to
make our notation compatible with that in [Brion], we define the coefficients ¢ ()
in Z[X] by

[£2]- 0] = 3 (0 [Ou]-
weW
In other words, the ¢ ()\) are expressed in terms of the Kr-Chevalley coefficients,
as follows: ¢/ (A) = 3_,ca eyttt see ([BF).
Theorem 8.6. [Brion, Theorem 4] We have the following duality formula:

e (V) = (=1 e (wo) .

Proof. Let (31,...,0;) and (r1,...,7) be the A-chain of roots and the A-chain of
reflections associated with some alcove path. Let us translate this alcove path by
A, reverse its direction (cf. Remark BEH), and then apply the map A — —w,(A4) to
the corresponding alcoves. Note that —wo(A4,) = A,. The resulting alcove path
corresponds to the (wo\)-chain of roots (w3, . . ., wsF1) and a certain we(A)-chain
of reflections (r,...,77). We can express the affine reflections r’;, as follows. Let
v and t) be the operators on by given by v : pp — —p and £y : o — p+ A. Then
T; = Woy tATjt_\Y Wo. Thus F; = WoTjWo.
Clearly, to each sequence J = (41, j2, . - ., js) with

U D> UTj > UTG Tjy > > UTj T, - Tj, =W,
corresponds the sequence J' = (js, js—1,--.,71) with
—/ - Y =
WWo > WWoTj, > WWoTj T,y > v+ > WWoly Ty, 4+ Tjy = Uo.

4[(}rRa] appeared in arXiv after the present paper was finished.



22 CRISTIAN LENART AND ALEXANDER POSTNIKOV

This correspondence is a bijection. Since w, maps positive roots to negative roots,
we have n(J') = s—n(J) = £(u)—l(w)—n(J), so (—1)")) = (=1)fw)—Lw)(_1)n(J"),
This takes care of the sign in the duality formula.

It remains to check that the sequences J and J’ produce the same weight, see
condition (b) in Theorem Bl Tt suffices to show that

R = . / !
Tj Ty - T, (—A) = Fjy Fjy o T wors 15

T We (=)

Let us denote v = rj, ---7;, € Wag. Then the left-hand side of this expression is
v(—A). We can write the right-hand side of this expression as

Ty - Ty, YAy, i toay (=A) = —otx01(0).
We claim that

(8.1) v(=\) = —otyv 1(0),
for any v € Wag and A € A. Indeed, if v(=\) = 9(=A) + , then v=1(0) =
2750 — p) = =0 H(p). Thus vtxv~1(0) = v(\) — p, as needed. O

Let us also present a new duality formula. We denote by ¢ the involutory auto-
morphism of Z[X] given by ¢ : at — x =W,

Theorem 8.7. We have the following duality formula:
e (V) = (=) =1y et (-0)).

u

Proof. Let (31,...,0;) and (r1,...,7) be the A-chain of roots and the A-chain of
reflections associated with some alcove path. Let us translate the alcove path and
reverse its direction, as discussed in Remark Bl We obtain the (—\)-chain of roots
(=Bi,...,—f1) and the corresponding (—\)-chain of roots (r],...,7r}). Let ty be
the operator of translation by A, as before. Then r}; = txr;t_x. Thus 7} = 7;. In an
almost identical way to the proof of Theorem B we can now construct a bijection
between the appropriate decreasing saturated chains from u to w, and those from
wow to wou. The discussion about the signs is also similar. It remains to verify
the weight condition:

T3 Ty e g (= A) = =T Ty o7 e (M)
This identity can be written as v(—\) = —vt\v~t_x()), for v =r;, ---7;,, which
is equivalent to (B). O

The two duality formulas above imply the following formula.

Corollary 8.8. We have

Note each of the two duality formulas in Theorems and can be obtained
from the other one combined with Corollary

Kumar provided us with the following geometric explanation of Corollary B8
This duality in equivariant K-theory is induced by the standard involution on G/ B,
which interchanges the Schubert varieties X,, and X, ww,. Let us denote by 6 the
canonical isomorphism @) from (Z[X] ® Z[A])/Z to Kr(G/B).

Proposition 8.9. There is an involutive automorphism w on Kr(G/B) such that



AFFINE WEYL GROUPS IN K-THEORY AND REPRESENTATION THEORY 23

(a) the involution w maps each class [Oy)] t0 [Owoww,);
(b) under the isomorphism 0, the involution w maps T# @ e to x ™ol @ e~ WA,

for A, p e A.

Algebraic proof. The involutive automorphism of Z[X] ® Z[A] given by z# ® e*
=% (1) @ e=wo(N) preserves the ideal Z and, thus, induces an involutive automor-
phism w on Kp(G/B) ~ (Z[X] ® Z[A])/Z. Applying this involution to the defi-
nition of the elementary Demazure operators T; in B2), we deduce that w T;w =

T;, where j is given by a; = —wo(a;), or equivalently, s; = wos;w,. Thus
wTyw = Tyoww,, for any w € W. Kostant-Kumar’s formula @) implies that
w : [Ow] = [Oweuww, - u

Geometric proof (due to Kumar [Kuml]). Let ¢ : G — G be the Chevalley isomor-
phism. This is an algebraic group isomorphism mapping t +— ¢t~ ! for ¢t in T, and
B — B7, where B~ is the opposite Borel subgroup. Also let ¢,,, : G — G be
the automorphism given by g — W,gw, !, where w, in N(T) is a representative of
wo. Let ¢ : G — G be the composite c o ¢,,,. Then ¢(B) = B. Thus ¢ induces a
variety isomorphism ¢ : G/B — G/B. Moreover, since ¢ induces the identity map
on the Weyl group, we see that ¢(X,) = Xu,wuw,- Thus ¢ induces the involution
w on Kp(G/B) such that w : [Oy] — [Ow,ww, -

To show that, under the isomorphism #, we have w : e* — e~%°*, we identify
G/B with K/T, where K is a maximal compact subgroup of G. Let us consider
the following bundle morphism.

K xp C_y K x7 Cy

K/T

K/T

Here we let g/b\(k,vo) = (¢(k),Us), where v, is a generator of C_,, x, and T, is a
generator of Cy. It is easy to see that ¢ is well defined. Thus, we have wof(1®e) =
0(1 ® e~*°*). The proof of w : z# — z =/ is similar. O

Note that the map ¢ in the above proof is not T-equivariant, whence the invo-
lution w is not a Z[X]-linear map.

Let ¢}/, € Z[X] be the structure constants of K7(G/B) with respect to the basis
of classes of structure sheaves of Schubert varieties:

[Ou] - (O] = chﬁv [Ow].

The coefficients ¢ (f+w;) are related to certain structure constants ¢, as follows.

Corollary 8.10. cf. [Brion] For v # w, we have
(a) e (—wi) = —a= e el
(b) ¢ (wi) = (1) == tgen e,
(¢) e(wi) = (= (

2w (

Also, we have c* = 1 — gwolwi)—u(wi)

Wo 84U

1)E(u)7l w)flxwi L(Cwou )

Wo S, Wow/ *

The first two formulas (a) and (b) were given by Brion [Brion] for K(G/B) in a
slightly imprecise form.
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Proof. Identity (a) is obtained from the formula in Lemma Bdl(a) by multiplying
both sides by [O,]. Identity (b) is obtained from (a) and the duality formula in
Theorem B8, as follows:

e (wi) = (1) = eive (wo (wi) = (=1)" e (—w;)

WWo

= (_1)€(u)—€(w)—1x—wo(wj) ciwo _ (_1)é(u)—£(w)_1xwi o

Wo Sj,WWo SiWo,WWo *

Here we used the fact that —w,co; is the simple root a; such that s; = wes;wo.
Similarly, we obtain identity (c) using the duality formula in Theorem ([

Remark 8.11. We can easily expand the product [Oy,s,] - [On] using our Kp-
Chevalley formula, as shown in Corollary However, it is hard to apply the
Pittie-Ram formula directly to the calculation of this expansion, because the latter
formula works for dominant weights only. In order to use this formula, one needs to
invert the operator of multiplication by [L.,] acting on the |IW|-dimensional space
Kp(G/B). Alternatively, one can use Brion’s geometric argument to derive the
second formula in Corollary But then, one needs to apply the Pittie-Ram
formula for computing all products [L,;] - [Oww,], for w € W, and extract the
coefficient of [Oyuy,] in each result, where j is given by s; = wos;w.. Indeed, we
have no way of knowing in advance to which Weyl group element an LS-path leads,
via Deodhar’s lift operator. In other words, it is hard to “invert” the Pittie-Ram
construction based on LS-paths and Deodhar’s lifts.

9. THE YANG-BAXTER EQUATION

Our construction is based on a certain R-matrix, that is, a collection of operators
satisfying the Yang-Baxter equation. In this section, we discuss the Yang-Baxter
equation, following the approach of Cherednik [Cher.

For a pair of roots a, 3 € ® such that (o, 3) < 0, the subset of roots A C ®
obtained from o and § by a sequence of reflections s, and sg is a rank 2 root
system of type A; x Ay, Aa, Ba, or G3. The reflections s, and sz generate a
dihedral subgroup in W of order 2m, where m = 2,3,4,6, for types A7 x A;, As,
By, G, respectively. The condition («, 5) < 0 implies that «, 8 form a system of
simple roots for A. The m roots in A expressible as nonnegative linear combinations
of a and § can be normally ordered as follows: «, s4(0), sasg(c),...,sa(a), 5.

The following definition was given by Cherednik [Cher, Definition 2.1a] in a
slightly different form.

Definition 9.1. We say that a collection of invertible operators {R, | « € ®}
labeled by roots satisfies the Yang-Bazter equation if R_, = (R,)~! and, for any
pair of roots «, 5 € ® such that (a, 3) <0, we have

(9.1) RaRs, (3)Rssp(a)  Ropya) B = RpRsy(a) - Ropsp(a)Bs, (5) Ra-

A collection of operators {R, | o € ®} satisfying the Yang-Baxter equation is also
called an R-matriz.

For example, the operators R, and Rz commute whenever (o, §) = 0. If A is of
type Asg, then the Yang-Baxter equation (I]) says that

RoRoysRs = RgRoypRa.

The following two lemmas are implicit in [Cher].
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Lemma 9.2. Consider a collection { Ry | « € @} of invertible operators labeled by
positive roots which satisfies the Yang-Baxter equation @), for any pair of positive
roots a, 3 € ®1 such that (o, 3) < 0. Let us extend this collection to all roots oo € ®
by R_o := (Ra)™1. Then the collection {R, | a« € ®} is an R-matriz.

Proof. Let us multiply the Yang-Baxter equation @Il) by R_s on the left and on
the right. We get

R_pRaRs, (5)Rsosp(a)  Rsg(a) = Rsg(a) * Rsasp(a) Rsa (8 RaR—p-

This is the same equation with (¢, 3) replaced by the pair (s3(8), sg(a)). Applying
this procedure repeatedly, we can always transform the pair (a, ) into a pair of
positive roots. ([l

For a decomposition v = s;, ---s;, € Wag, reduced or not, of an affine Weyl
group element v, let (B1,...,0;) be the corresponding A-chain of roots. For an
R-matrix {R, | @ € ®}, let us define R©1*u) = Ry R, | --- Rg, Rp, -

Lemma 9.3. Let {R, | a € ®} be an R-matriz. Then the operator R(a i)
depends only on the affine Weyl group element v = s;, - --s;,, not on the choice of
the decomposition.

Proof. The Coxeter relations (B33) imply that any two decompositions of v can
be related by a sequence of local moves of the following two types: (1) adding or
removing segments s;s;; (2) the Coxeter moves

m;j terms m;j terms

(92) Siy vt Sig (SiSjSi"')Sib"'Sil — Siy 00 Sig (SjSiSj"')Sib"'Sil-

Adding or removing a segment s;s; in a decomposition for v results in adding
or removing a segment 3, —@ in the sequence of roots (81, ...,0;). This does not
change the operator Rg, - - - Rg,, because RgR_g = 1. A Coxeter move ([L2) results
in applying the Yang-Baxter transformation

OZ,Sa(ﬂ),-.-,Sﬁ(Q),ﬁ I 6)Sﬁ(o‘)a"'a5a(6)va

to the segment (Bai1,-..,00—1) = (@, 84(08), -+ ,3) in the sequence (f1,...,5).
Here we have o = 5, ---5;,(a;) and 8 = 5; ---8;, (). Note that (o, ) =
(i) < 0. The Yang-Baxter equation (@Il guarantees that this transforma-
tion of the sequence (f1,..., ;) does not change the operator Rg, - - - Rg,. ]

10. BRUHAT OPERATORS
In this section, we present a class of solutions of the Yang-Baxter equation.

It will be convenient to extend the ring of coefficients Z[X] = R(T) in Kr(G/B)
as follows. Let us shrink the weight lattice h" times by defining A/hY := {\/hY |
X € A}, where Y := (p,0")+1 is the dual Coxeter number. Let Z[X] be the group
algebra of A/hY, which has formal exponents x*/ " for A € A. This is the algebra

of Laurent polynomials Z[X] = Z[z=< /" . z¥<r/P] Let
Kr(G/B) = Kr(G/B) @z1x) ZIX].

The space Kr(G/B) has the Z[X]-linear basis given by the classes [O,,], for w € W.
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For a positive root a € ®*, let us define the Bruhat operator B, acting Z[X]-
linearly on K7(G/B) by

[Ows,] if l(wsy) = (w) — 1,
(10.1) B, : [Oy] — ]
0 otherwise.
Also define B, := —B_,, if a is a negative root. The operators B, move Weyl

group elements one step down in Bruhat order. 5
For a weight ), define the Z[X]-linear operators X* acting on Kr(G/B) by

(10.2) X1 [04] = 2 [0,).
For aw € ® and A\, € A, these operators satisfy the following relations:
(10.3) (Ba)? =0,
(10.4) XA XH = X MR
(10.5) B, X* = XN B, .

For a fixed weight A and k € Z, we define a family of operators {R, | o € ®}
labeled by roots o € ® acting on K1 (G/B) as follows:
(10.6) Ry = Xk 4 XxOo o — XA (XHF 4 B,) X,
Using relations (IL3) and (LX), we obtain
R_o =X ke xahap — (R)L

Theorem 10.1. Fiz a weight X\ and k € Z. The family of operators {R, | « € @}
given by (LG)) satisfies the Yang-Baxter equation ().

Proof. Let us first assume that A = 0 and & = 0. In this case R, = 1 + B,.
In [BEP], we proved the Yang-Baxter equation for a general class of operators by
checking it for all the rank 2 root systems (that is, for types Ay x Ay, As, Ba,
and G3). In particular, the results of [BEP] imply that the family of operators
{14 B, | a € &1} satisfies the Yang-Baxter equation ([@1]). Also R_, =1— B, =
(14 B,)"! = (Ra)™!. According to Lemma @2 the collection {1+ B, | a € ®} is
an R-matrix.
Let us now consider the general case. For a € ® and n € Z, let us define

R :=1+ X""B,.
Then R, = Xk R((;\’av)_k. For p € A, we get, using (LA,
(10.7) R X# = X+ R (e,
Let us write the left-hand side of the Yang-Baxter equation ([@1l) as follows:
R, R, = XFkn Rjylll X ke RZE o X Erm Rzylfnv

where (71,...,7m) = (@, $a(B), -+ ,sg(a), B) and n; = (\,,”) — k. Using () to
commute all X*7 to the left, we obtain the expression

o k +. 4 ~n't Anl An;
R, R, =X (m Ym.) Ry RY2 - Ry
where

np=ni— Y k) = A= k@i = =)o) — k.
j=it+1
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Let us show that

(1 + -+ %-1,%) = i+ my %)
for all @ = 1,...,m. Suppose that i < (m + 1)/2. The reflection s,, sends the

roots Y1y Vi1 to —V2i—1y- -5 TVit1 and the roots V2iy -5 Ym to Tms -+ V2i5
respectively. Thus

m+-+7-17%) =+ +12i-1,7) and  (v2i + -+ ym, %) =0,
as needed. Since (v;,7,’) = 2, we get
ny=A=k(ig1 = =), %) — k= (A= ke, 7)),
where ¢ = %(71 + -+ ym) is the “rho” for the rank 2 root system A generated by

« and S.
This shows that

_ yv2ko A1y B Yow _ yrut2ko 50 50 v —p
Ry, - Ry, = X2Re R L Rlm — xut2ke R0 RO Xk

where © = A — ko. Analogously, the right-hand side of the Yang-Baxter equa-
tion (@) can be written as

R, ooy, = XPFRRS L X0

The fact that the operators ]:22 = 1+ B, satisfy the Yang-Baxter equation implies
that the family {R, | a € ®} satisfies the Yang-Baxter equation as well. This
concludes the proof. O

In the rest of the paper, we only use a special case of the operators R, defined
in ([6), namely we set A := p and k := 1, which leads to

(10.8) Ry =X+ XPo)aB, — XP(X*4 B,)X?, forac®.
11. COMMUTATION RELATIONS

Let T} be the operator on KT(G /B) induced by the elementary Demazure opera-

tor @2), fori =1,...,7. In view of (E3) and ), this operator acts Z[X]-linearly
on Kp(G/B) as
Ows,| if L(ws;) =1 1,
rroue | O] i ts) = ) +
(O] if l(ws;) = L(w) — 1.

Let B; := B, be the Bruhat operator for a simple reflection, which is the Z[X]-
linear operator on Kp(G/B) defined by

Ows;] ifl(ws;) =l(w) —1

B (o] { 1Ous i lws) = @)

0 if L(ws;) = £(w) + 1.

)

Let us define a similar Z[X]-linear operator B} by
Owsi f é i) = é —|— 1,
b o) § Ousd i) = tw)
0 if l(ws;) = l(w) — 1.
Since both operators B and B; map [O,,] to [Oys,] or to zero, we have
(11.1) X*Bf =B X%W_ and X" B;=B; X5,

for any weight pu € A.
The operator B} can be expressed in terms of T; and B; as follows.



28 CRISTIAN LENART AND ALEXANDER POSTNIKOV

Lemma 11.1. We have Bf =T; (1 - B;) = 1+ B;))(T; — 1), fori=1,...,r.

Proof. 1t is enough to check this claim for restrictions of the operators on the 2-
dimensional invariant subspace spanned by [O,] and [Oys,], for any w € W such
that £(ws;) = £(w) + 1. The required identity is

0 0y (0 O 1 -1y (1 1 -1 0
1 0) \1 1 0 1) \0o 1 1 0)°
which we leave to the reader as an exercise. O

Recall that Bg are the Bruhat operators given by (ILTI).

Lemma 11.2. cf. Deodhar [Deoll, Lemma 2.1] We have Bg Bf = B} By, (), for
i=1,....7 and B € ® such that 8 # tay.

Proof. We may assume that 8 € ®1. Let 3 = s;(8). Then 8’ € ®* and 3 # «;.
Both operators Bg B} and B} Bg map [Oy] to [Ows;ss] = [Ouws, s, or to zero.
Thus, we need to show that Bg B} ([O,]) is nonzero if and only if B} Bs/ ([Oy]) is
nonzero.

Suppose that this is not true. One possibility is that we have Bz B} ([Oy]) = 0
and B} By ([Oy]) # 0. Then {(w) = l(wsp) +1 = l(ws;) +1 = l(wsp s;). Indeed,
Bf B/ ([Ow]) # 0 implies that l(wsg) = L(w) — 1 and {(wsps;) = L(wsa) + 1,
while Bg B} ([O.]) = 0 implies that ¢(ws;) # £(w)+1, and, thus, {(ws;) = {(w)—1.

Let us choose a reduced decomposition for w = s;, ---s; such that 4y = 7.
By the Strong Exchange Condition [Huml, Theorem 5.8], the fact that f(w) =
l(wsgr) + 1 implies that there exists k € {1,...,1} such that s;, ---8;, ---s;, is a
reduced decomposition for wsg . Furthermore, we have 8" = s;, - - - 54, (v, ). Since
B # «a;, we have k # [. We obtain a reduced decomposition for wsg: that ends
with s;. Thus ¢(wsgs;) = £(wsg) — 1, which is a contradiction.

Now suppose that we have Bg Bf([Oy]) # 0 and Bj Bg/([Oy]) = 0. Then
Uw) = Ll(ws;) =1 =L(wsg) — 1 = L(wsps;) or, equivalently, L(w') = l(w's;) +1 =
lw'sg) + 1 = l(w'sgs;), for w' = ws;. The above argument shows that this is
impossible. (I

Remark 11.3. The contradictions derived in the above proof are essentially the
content of Lemma 2.1 in [Deall], which is proved in a similar way.

Let {R, | « € ®} be the R-matrix given by ([IL). The main technical result of
this section is the following statement that gives a commutation relation between
this R-matrix and the Demazure operators T;.

Proposition 11.4. For any 8 € ® andi=1,...,r, we have
(a) Rai T, =T R—ai + Rai;
(b) Rfai E = Tz Rai - Rai;
(C) Rﬁ Ti = Tl R,ai Rsi(g) Rai Zfﬁ 75 :|:Ozi.

Proof. We have R,, = X% (14 B;) and R_,, = (1 — B;) X .
(a) By LemmalTT (1+ B;)(T; — 1) =T; (1 — B;). Thus
X% (14 B)T; = X Ty (1 - By) + X% (1+ B,).

Then use [Tl to commute X* with T; (1 — B;) = B} in the first term in the
right-hand side. This produces (a).
(b) Multiply (a) by R_,, on the left and by R,, on the right.
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(c) Let 8’ = s;(8). Identity (c) can be written as
(XP + X" Ba) Ty = T, (1 — By) X~ (X7 + X¥9 Bg) X (1+ By),

where k = (p, 8) and &' = (p, (8)¥) = (si(p). 8) = (p — s, #*). The right-hand
side of this identity can be written as

Ti(1—B;) (X” + X" Bg)(1+ By).
Indeed, X* '~ Bp X = X" B, because KB —a;i+sp () =(p—ay, %) 5 —

(ai, (B)Y) B = (p,BY) B = kfF'. Commuting X#" and X*7" By, with T; (1 — B;) =
B} using (ITTl) and Lemma [[T2, we can rewrite this as

(X? + X" Bg) By (1+ B;) = (X? + X" Bg) T3,
which is equal to the left-hand side of required identity. O

12. PATH OPERATORS

Recall that v_y € Wag, A € A, is the unique element of the affine Weyl group
such that v_»(A4,) = A_x = A, — A. Each decomposition v_y = s;, -+ 8;, in Wag

corresponds to an alcove path A, i S a; and the sequence of roots

(B1,...,0) is called a A-chain, see Definition B4l Also recall that there is an

associated alcove path A, TN Ay, as discussed in Remark B3
For \ € A, let us define the operator RN acting on K7(G/B) by

(12.1) RW = Rg Rp,_, - Rg,Rp,,
where (B1,...,0;) is a A-chain, and the R-matrix {R, | « € ®} is given by ([ILF)).

Remark 12.1. Theorem [[L1] and Lemma imply that the operator RN depends
only on the weight A\ and does not depend on the choice of a A-chain.

The following result is not used in subsequent proofs. We state it because it

exhibits the commutativity of the operators E* and E* in our combinatorial model,
based on Remark [ZT]

Proposition 12.2. For any A\, i € A, we have R - RI¥ = R,
Proof. Let us choose a A-chain (81,...,5;) and a p-chain (5,...,5,,). They cor-

respond to alcove paths A, U N Ay and A, L N N u- If we translate
all alcoves in the second path A, we obtain the alcove path A, P, B, Axtp-

Let us concatenate the first path from A, to Ay with the translated path from A,
to Axy,. We obtain the alcove path

A, Lo P g ﬁ—;">mﬁ—i>AA+#.
This shows that the sequence (51,...,08.,,01,...,01) is a (A + p)-chain. Thus
R . RlH — Rp, -+ Rp,Rg -+ Rg = R
as needed. (]

Lemma 12.3. Let (f1,...,0:) be a A-chain. Then, for any i = 1,...,r, the se-
quence of roots (a;, si(B1), .-, 5:i(B1), —;) is an s;(X)-chain.
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Proof. Applying the reflection s; to the alcove path A, O N A, we obtain
the alcove path s;(As) By olBy) 5;(Ax). We have A, —=% 5;(A,). Translating
this relation by s;(\), we obtain (s;(A4s) + 5;(\)) —= (Ao +5;()\)), or, equivalently,

si(Ax) =5 Ag,(r). Thus
0 =% il A0) " B g (45) 2 A

is an alcove path, and (o, s;(81), ..., :(01), —a;) is an s;(A)-chain. O

Lemma 12.4. Let ($1,...,0;) be a A-chain, and let Agy T N Ay be the
corresponding alcove path from Ay = Ao to Ay = Ax. Assume that £3; = o; is a
simple root, for some i € {1,...,r} and j € {1,...,l}. Then

(i, 8i(B1)s -y 8i(Bj=1): Bjt1, - -5 Br)
is an s(A)-chain, where s = sq, 1 denotes the affine reflection with respect to the

common wall of the alcoves A;_; LN Al—jta.

Proof. Let us apply the following tail-flip to the alcove path Ay NN N Ay

We leave the initial segment Ay B, P A;—; unmodified and apply the affine

reflection s to the remaining tail: s(A;_j41) #Pap) s(Ai—jy2) ) | 2By s(Ap).

Note that A;_; = s(A;—j+1) and § = s;. Also note that s(4;) = s(4, + A) =
5i(Ao) + s(\), and, thus, s(4;) =% Ag, (v Let us add the step s(4;) 2 Ag, () at

the end of the alcove path with flipped tail. We obtain the alcove path
Ag Lo Py O Ay ) MR ) 25 A ).
from A, to Ay, (n). Thus (i, si(61),...,8i(Bj-1), Bj+1,--,01) is an s(A)-chain. [
Proposition 12.5. For any A € A and i € {1,...,r}, we have
RN . T, =T, RIsOM] 4 Z R —kai] _ Z RA—kai]
0<k<(A,a)) (Ma))<k<0

Proof. Let us choose a A-chain (81,...,5). Let Ag N A; be the corre-
sponding alcove path from Ay = A, to A; = Ay. And let r; be the affine reflection

with respect to the common wall of the alcoves A;_; R Al—ji.
Then R = Rg, --- Rg,. Using the relations in Proposition [T repeatedly to
commute T; with Rg, --- Rg,, we obtain

R -~ Rp, Ti = TiRo,Rs ) Rs;(8) Boy
+ Z Rg, - 'RﬁjﬂRSi(Bj—l) T RSi(ﬁl)Rai

- Z Rp - Rp; Ry 1) - Ry (1) R

According to Lemmas and [Z74 the right-hand side of this expression can be
written as

RW.T =T R 4 3 RO §T RO,

Ji Bi=o JiBi=—ai



AFFINE WEYL GROUPS IN K-THEORY AND REPRESENTATION THEORY 31

For a hyperplane H of the form H,, x, k € Z, let py be the number of times

the alcove path A, NN Ay crosses H in the positive direction, and ny

be the number of times the path crosses H in the negative direction. In other
words, pr. = #{j | B; = @i, 15 = sa; k) and ng = #{j | B = —ai, 15 = Sa, k)
Then px — ny is nonzero if and only if H separates the alcoves A, and Ay. More
specifically,

1 f0<k<(\aY),

Pk — N = -1 if0>k>(\a)),

0 otherwise.

This shows that

RW.T, = T, . RlsiO] 4 Z Rlsa; k()] _ Z Rlsas s V]
0<k<(Na) (MY )<k<0
which is equivalent to the claim of the proposition. ([

13. THE Kp-CHEVALLEY FORMULA: OPERATOR NOTATION
We can formulate and prove our main result—the equivariant K-theory Cheval-
ley formula—using the operator notation, as follows. Recall that
RO = Ry, Ry, = X7 (X% 4 By) -+ (X% 4 By) (X + By,) X7,
where (f1,...,0;) is a A-chain.
Theorem 13.1. For any weight \, the operator R
For any u € W, we have

preserves the space K1(G/B).

[£3] - [0u] = RY([04)),
i.e., the operator R acts on the space Kr(G/B) as the operator of multiplication
by the class [L)] of the corresponding line bundle.

(A]

Proof. Proposition [ZH says that the operators R satisfy the same commutation
relations with the elementary Demazure operators T; as the operators E*, see (0.
Also RM([01]) = 2* [01], by Proposition [Z3 Now Lemma Bl implies that the
operator RN preserves Kr(G/B) ¢ Kr(G/B) and acts as the operator E* of
multiplication by the class [£] of the corresponding line bundle. O

In Section [[4 we show that Theorem [[31] is equivalent to Theorem In
Sections [[A and [[G, we illustrate Theorems and [[31] by several examples.

Remark 13.2. If )\ is a dominant weight, then, according to Lemmal2 the operator
RW expands as a positive expression in the Bruhat operators B,, a € ®1, and the
operators X*. Indeed, a reduced A-chain involves only positive roots. In this case,
Theorem [[31 gives a positive formula for [£y] - [O,].

Specializing z* — 1, we obtain the nonequivariant K-theory Chevalley for-
mula. In the following corollary, [£,] and [O,] denote classes in the nonequivariant
Grothendieck ring K (G/B).

Corollary 13.3. Let A € A and (B1,...,0;) be a A-chain. Then the operator
Rgn)il = (1 + Bﬁl) (1 Bﬁl)

acts on the Grothendieck ring K(G/B) as the operator of multiplication by the class
[£A] of the corresponding line bundle.
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Remark 13.4. We claim that Corollary implies the classical Chevalley for-
mula BIH). In order to derive this formula, we need to collect linear terms in
the expansion of the product (1 + Bg,)--- (1 + Bg,). Indeed, the coefficient cﬁﬁusa,
for f(usq) = £(u) — 1, equals to the number of times the term B, appears in the
expansion minus the number of times B_,, appears in the expansion. According to

Lemma B33 for any o € &, this coefficient is

#{J | B; = o} = #{j | Bj = —a} = —ma(A_\) = (\,a”),

which is exactly the coefficient in the Chevalley formula. Thus, BI0) and BI0)
follow.

14. CENTRAL POINTS OF ALCOVES

In this section, we show that Theorem Bl is equivalent to Theorem 3l In
order to do this, we show explicitly the way in which the operator R acts on
basis elements [O,]. It is convenient to do this using central points of alcoves.

Let us define the set Z C by as
Z:={Ce ALY |(¢ ") ¢gZfor any a € D},

i.e., Z is the set of the elements of the lattice A/hY that do not belong to any
hyperplane H, ;. Then every element of Z belongs to some alcove. The affine
Weyl group W,g preserves the set Z. This set was considered by Kostant [Kost].

Lemma 14.1. [Kosf]l Fach alcove contains precisely one element of the set Z.
The only element of Z in the fundamental alcove Ao is p/hV.

Proof. Tt is enough to prove the statement only for the fundamental alcove, because
Wag acts transitively on the alcoves. Let us express the highest coroot as a linear
combination of simple coroots: Y = c¢;ay + -+ + ¢.a’. Then ¢; are strictly
positive integers and hY = ¢; +- - -+ ¢, + 1. Every element ¢ of Z can be written as
¢(=(aywi+ - +arw.)/hY, where ay,...,a, € Z. The condition that { € ZN A,
can be written as a1,...,a, > 0and (a1¢c1+ -+ arc)/(cr+ -+ +1) <1,
see (L2). The only sequence of integers (a1, .. ., a,) that satisfies these conditions is
(1,...,1). Thus ZNA, consists of the single element (w14 -+w,)/hY = p/hY. O

For an alcove A, the only element (4 of Z N A is called the central point of
the alcove A. In particular, (4, = p/hY. The map A +— (4 is a one-to-one
correspondence between the set of all alcoves and Z.

Lemma 14.2. For a pair of adjacent alcoves A - B, we have (g — (4 = a/hV.

Proof. Tt is enough to prove this lemma for the fundamental alcove A = A,. All
alcoves adjacent to A, are obtained from A, by the reflections sg, s1,...,s,; and

A, =2 s;(Ao). Applying these reflections to the central point (4, = p/hY, we
obtain s;(Ca,) — Ca, = —a;/hY, fori=0,...,r. O

In fact, in the simply-laced case, the converse statement is true as well.

Lemma 14.3. Suppose that ® is a root system of type A-D-E. Then A = B if
and only if (g — Ca = a/hV.
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Proof. Again, we can assume that A = A, is the fundamental alcove. In view
of Lemma [[L2 it remains to show that u = p/hY + a/hY ¢ Z, for any root

a€ ®d\{-ay,...,—qa,, 0} For any such «, there is a simple root «; such that
a+ «; is a root. Thus (o, ;) = —1 and (u, ;') = 0. This implies that p belongs
to the hyperplane H,, o and, thus, 4 & Z. ([l

Remark 14.4. In the case of a nonsimply-laced root system, the statement converse
to Lemma is not true. In other words, there are nonadjacent alcoves A and B
such that (g — (4 = a/h" for some root a.

Let us now fix an alcove path A, _—61> _—Bl> _» and the associated A-chain
(B1,...,0;). By the definition, the operator RN can be expressed as
(14.1) RN = X? (XP 4 Bg)--- (XP2 + Bp,) (X' + Bp,) X 7.
We can expand R as a sum of 2! terms. For a subset J C {1,...,1}, let R[f‘] be
the term that contains Bg,, if j € J, and X fi . otherwise. It is convenient to give
the following interpretation for the term R‘[IA] using tail-flips.

Let 7 = (0,7, m1,...,m, 1) be a collection of points in hi. We can think of

this collection as a continuous piecewise-linear path in b from 0 to p. Let j be
an index such that m;_1 # 7, and let r; be the affine reflection with respect to
the perpendicular bisector of the segment [m;j_1,7;]. In other words, the affine
reflection 7; is given by the condition 7;(m;—1) = ;. For such an index j, we define
the j-th tail-flip of 7 as
f](ﬂ—) = (07 TOy -+ Tj—1,T5 (7Tj+l)7 R ,Tj(ﬂ'l), Tj (/J’))
Then f;(m) corresponds to a path from 0 to r;(u). Let us associate with 7 the
following composition of operators
X, = xhY(m=—p) xhY(m_1—m) | xhY(mo—m) xhY(0-m) _ x—h"'u

Then Xy, = X " 00,

Let us now assume that m = (0, 4y, .- -,C4,, —A), i.e., 7;’s are the central points
of the alcoves A;. Then

Xp=XP X xXP X0 = XM,

Indeed, hV(0 — Ca,) = —p, hY(Cay_y — Ca,) = By and £Y(Ca_, — (=N) = p,
see Lemmas [l and M2 The expression X, is precisely the term R([Z))\] in the

expansion of ([ZT]).

In this case, r; is the affine reflection with respect to the common face of 4;_;
and Aj and 7j = sg,, for j = 1,...,1. Suppose that the subset J consists of a single

element j. The corresponding term R!{)J‘,]} in the expansion of (A1) is obtained from
the above expression X by replacing the term X% with Bg,. Let us commute Bg,
all the way to the left using relation (ILT). We obtain

R!{)}]} — XP Xﬁz . _Xﬁj+lBﬁjXﬁjfl . Xﬁl XF
= By, x7ip) xTi(B) .. xTiBir) xBi-r ... xP x P

The product of X’s in the last expression is precisely the operator X £5(m) for the

j-th tail-flip 7. In other words, RF{)J‘.]} = Bg; Xy;(n)-
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In general, for a subset J = {j1 <--- < js} C {1,...,1}, we have
A
R[J] = Bg;, - Bp;, Xgy o p5.(m)-
Indeed, let us start with the expression X,. Replace the term X% in it with Bg, ,
and commute it all the way to the left. This leads to the expression Bg, Xy, (r)-
Then replace the term X Pis—1 with Bg,; _, and commute it to the left. This leads
to the expression By, Bg, | Xg (m), etc.
We have
X, fy(my = X T mas (2
According to (2, this operator is explicitly given by
Xpjyeotya(m)  [Ou] — g N[0, ],
Let us summarize our calculations.

Proposition 14.5. Let A € A be a weight. Let (r1,...,7) and (B1,...,05) be
the A-chain of reflections and the \-chain of roots associated with a decomposition
V_) = 8;, - 8;,. Then the operator RM s given by

R . (0] — Zx*urjl""“js(*%) Bg, -+ Bpg, ([Ou]),
7
over all subsets J = {j1 <---<js} C{1,...,1}.

We can now finish the proof Theorem

Proof of Theorem Bl This follows from Theorem [[3] and Proposition [£ZH3 O

15. EXAMPLES FOR TYPE A

In this and the next sections we illustrate our results by presenting several ex-
amples.

Suppose that G = SL,. Then the root system & is of type A,_1 and the
Weyl group W is the symmetric group S,. We can identify the space by with
the quotient space V' := R"/R(1,...,1), where R(1,...,1) denotes the subspace
in R™ spanned by the vector (1,...,1). The action of the symmetric group S, on
V is obtained from the (left) S,-action on R™ by permutation of coordinates. Let

€1,...,€n € V be the images of the coordinate vectors in R™. The root system
® can be represented as ® = {a;; :=¢; —¢; | i # j, 1 <4,5 < n}. The simple
roots are o; = ajit1, for ¢ = 1,...,n — 1. The longest coroot is ¥ = ay,.

The fundamental weights are w; = &1+ ---+¢;, fori=1,...,n— 1. We have p =
ne1+(n—1)ea+---+2e,_1+€,. The dual Coxeter number is hY = (p,0Y)+1 = n.
The weight lattice is A = Z"/Z(1,...,1). We use the notation [A1,...,A,] for a
weight, as the coset of (A1,...,\,) in Z"™.

Let nZ C A be the set Z of central points of alcoves scaled by the factor h¥ = n.
The fundamental alcove corresponds to the point p in nZ. According Lemma [[23],
two alcoves are adjacent A —— B, o € ®, if and only if the corresponding elements
of nZ are related by n(g — nC4 = «. In this case, we write n(4 — nlg. Thus,
we have the structure of a directed graph with labeled edges on the set nZ. Alcove
paths correspond to paths in this graph. The set nZ can be explicitly described as

nZ = {[p1,..., n) € A| p1,. .., ptn, have distinct residues modulo n}.
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For an element p = [u1,...,un] € nZ, there exists an edge 24, (1 + ayj) if and
only if y; +1 = p; mod n. Given a weight A, the corresponding A-chains are in
one-to-one correspondence with directed paths in the graph nZ from p to p — nA.

Example 15.1. Suppose that n =4 and A = we = [1,1,0,0]. The directed path
[4,3,2,1] =22 [4,2,3,1] =¥ [3,2,4,1] =% [3,1,4,2] =¥ [2,1,4,3]

from p = [4,3,2,1] to p — nwe = [0,—1,2,1] = [2,1,4,3] produces the wy-chain
(3, 13, o4, 14).

Example 15.2. For an arbitrary n, we have w; =¢; = [1,0,...,0]. The path

non—1,...,1] B nh-1nn-2,...,1] X¥n-2nn—-1,n-3,...,1]

M n-3nn—1n-2n—4,...,1] ... 21 nn-1,..,2]
from p to p — nwy gives the wi-chain (a2, @13, 14, ..., @1,). In general, for any
k=1,...,n, we have the e;-chain
(15.1) (O ket 1y QU b2y -+ o s Qllomy Qe 1y (k2 e -« s Qi o1 )

given by the corresponding path from p to p — neg.

Recall that v_y is the unique element of Wag such that v_y(A,) = A_x. Equiv-
alently, we can define v_j in terms of central points of alcoves by the condition

v_a(p/hY) = p/hY = A.

Lemma 15.3. Suppose that ® is of type A,_1. Then, for k =1,...,n — 1, the
affine Weyl group element v_,, belongs, in fact, to S, C Wag. This permutation
is given by

( 1 2 - nm—k n—-k+1 --- n
Vg, =

k+1 k42 -+ n 1 k)ES"CWaH'

Proof. This permutation maps p = [n,...,1]to [k,k—1,...,1,n,n—1,... k+1] =
0,-1,...,—k+1,n—kn—k—1,...,1] = p — nwg, as needed. O

Let R;j := Rq,;. Theorem [[31] implies the following statement.

Corollary 15.4. For k = 1,...,n, the operator of multiplication by [L.,] in the
Grothendieck ring K1 (SLy/B) is given by

R = Ryp 1 Rpp o RprRinRin 1 Rirrr.

For k=1,...,n—1, the operator of multiplication by the line bundle [L,,] corre-
sponding to the k-th fundamental weight wy is given by

(15.2) Rl = gl Rl =TT II &

The combinatorial formula for multiplication by [£,,] in the Grothendieck ring
K (SL,,/B) that follows from formula [[52) was originally found in [Len].



36 CRISTIAN LENART AND ALEXANDER POSTNIKOV

Proof. The expression for RI*# is given by the ej-chain ([[5). The expression for
Rkl can be obtained by simplifying Rt - .. Rl*+] as shown in [Len]. Alternatively,
the reduced decomposition v_y, = (Sk - Sn—1)(Sk—1"*Sn—2) - (81 Sn_g) for
the permutation v_,,, given by Lemma corresponds to an wg-chain, see Defini-
tion B4l This wy-chain produces the needed expression for RI“»!. ([

Example 15.5. For n = 3, Corollary [5.4] says that
R[Wl] = R13 R12 and R[Wﬂ = R13 Rgg.

For a weight A = ajw; + -+ 4+ a,w,, we can obtain an expression for R by
concatenation of a; copies of R, ay copies of RI“2!, etc.

Theorem [B1] says that that the coefficient of [O,,] in the product [£,] - [O,] in
K7 (G/B) is given by the sum over subsequences in the A-chain (f31,...,/5;) that
give saturated decreasing chains u > --- > w in the Bruhat order on W. Let us
illustrate this theorem by the following two examples.

Example 15.6. Suppose that n =3, A = wy, and u = w, = 15281 € W. Let us
calculate the product [£,] - [O,] in K7 (SLy,/B) using Theorem Gl The w;-chain
(61,02) = (a12,0a13) is associated with the reduced decomposition s182 = v_, .
The corresponding ws-chain of reflections is (r1,72) = (51, $15251) = (Sa12,0, Sa13.0)-
Three out of four subsequences in (31, 32) correspond to decreasing chains in Bruhat
order starting at wo: (empty subsequence), (a12), and (a2, a13). Thus we have

[Ewl] . [Owo] _ xfwa(fwl)[owo] + Ifwom(fwl)[osﬁz] + xfwamrz(fun)[oﬁ]'
We can write this expression as
[‘C[l,O,O]] : [Owo] = LL'[O"O’I] [Owo] + "E[O)LO] [05152] + x[l,0,0] [082]'

The character of the irreducible representation V,,, is obtained from the right-hand
side of this expression by replacing each term z#[Q,,] with e#:

ch(Vo,) = 001 4 el0:1.0] 4 [1.0.0],
Let us give a less trivial example.
Example 15.7. Suppose n = 3 and A = 2w + wy = [3,1,0]. The path
[3,2,1] =22 [2,3,1] =2 [1,3,2] —°%' [1,2,3]
= 00,2,4] =¥ [-1,3,4] =¥ [-2,3,5]
from p =[3,2,1] to p — n\ = [-2,3,5] gives the A-chain
(B1,..-,B6) = (a12, a3, o3, iz, a2, ai3),

which is associated with the reduced decomposition v_) = 15251505182 in the
affine Weyl group. We have

R™ = Ry, - Rp, = Ri3 Ria Ri3 Ro3 Ri3 Ryp = RV RIw2l Rlenl,
The corresponding A-chain of reflections is
(Tla e 7T6) = (Salg,()a Sa13,05 Saes,05 Saiz,—1; Sajs,—1; 5a13,72)-

Suppose that u = s281. There are five saturated chains in Bruhat order de-
scending from u: (empty chain), (u > uSa,, = $2), (U > USays = S1), (U > USq,, >



AFFINE WEYL GROUPS IN K-THEORY AND REPRESENTATION THEORY 37

USaysSans = 1), (U > USays > USaysSay, = 1). Thus, the expansion of [£,] - [O,] is
given by the sum over the following subsequences in the A-chain (01, ..., G6):
(empty subsequence), (ai12), (a13), (a12, as3), (13, @12).

The sequence (f31,...,0s) contains one empty subsequence, two subsequences of
the form (a12), three subsequences of the form (aq3), one subsequence of the form
(12, a23), and two subsequence of the form (ay3, a12). Hence, we have

1£2] - [Ony0] = 278N [0, ] + (270N 4 g7urs (V) [0, ] +
+ (z7ur2(A) g gmura(=X) 4 gmure (=) [0, ] +
+ 27N (O] 4 (zmwrens(FN) 4 gmurars(ZA) (0]
We can explicitly write this expression as
[L£13,1,0] * [Os55,] = 20310, ] + (l’[g’o’” + 35[2’0’2]) [Os,] +
+ (I[I,S,O] + gl1.2.1] +lﬂ[1,1,2]) [0,,] + 2310 [0,] + ( 2,2,0] +I2,1,1) (O]
The corresponding Demazure character is

ch(Vi3,1,0),5081) =
el1:0:3] 4 o[3:0,1] 4 0[2,0,2] 4 p[1.3,0] 4 p[1.2,1] 4 p[11,2] 4 o[3,1,0] 4 0[2,2,0] 4 o[2,1,1]

16. EXAMPLES FOR OTHER TYPES

For an arbitrary root system, we can use the explicit construction of the A-chain
of reflections (r1,...,7;) and the A-chain of roots (f31,...,0;) given by Proposi-
tion

Example 16.1. Suppose that the root system @ is of type G2. Let us find A
chains for A = w; and A = wy using Proposition B The positive roots are
7=, Y2 =30 o, 13 =200 + g, Y4 =301 + 202, 15 =01 + a2, Y6 = Q.
The corresponding coroots are 7y = oy, 79 = of + o, 73 = 2oy + 3y, 7 =
af + 20, v =af +3ay, v =ay.

Suppose that A = w;. The set R, of affine reflections with respect to the
hyperplanes separating the alcoves A, and A_,, is

Rwl = {571,07 872,05 873,05 573,71; 574,07 5’75,0}'
The map h : Ry, — R"H! given by [E2) sends these affine reflections to the vectors
(07 17 0)7 (07 17 1)7 (07 17 %)7 (%7 17 %)7 (07 17 2)7 (07 17 3)7

respectively. The lexicographic order on vectors in R3 induces the following total
order on the set R,;:

$71,0 < Sy2,0 < Sy3,0 < Syy,0 < S95,0 < Syg,—1 -
Suppose now that A = wy. The set R, of affine reflections with respect to the
hyperplanes separating A, and A_,, is
Ru, = {572707 543,05 Sy3,—15 Sy3,—25 574,00 Sva,—15 595,00 Svs5,—1, 8757*2’8’)’610}'
The map h : R,,, — R"™! sends these affine reflections to the vectors
2 12 2 1 11
(0,1,1), 0,31), (331, (531, (0,3,1), (3.3,
1 11 2 L



38 CRISTIAN LENART AND ALEXANDER POSTNIKOV

respectively. The lexicographic order on vectors in R3 induces the following total
order on R,:

86,0 < 85,0 < Sy4,0 < Sy3,0 < Sy2,0 < Sy, -1 < Syg,—1 < Sy, —1 < Syp,—2 < Sqg,-2

The total orders on R,,, and R,,, correspond to the wi-chain (71, v2,7s, V4, ¥5,73)
and the wa-chain (vs, Y5, Y4, V35 Y25 V5, V3, V4, V5, ¥3). Thus, the operators of multi-
plication by the classes [L.,] and [L,,] in K7(G/B) are given by

Rle1l — ]-%,),3 ]%,),5 1%.74 R»yg R’yz R’yl?
Rlwa] — R,, R, R, Ry, Ry, R\, R\, R\, R\; Ry

By Lemma 53 the element v_,, belongs to the (nonaffine) Weyl group W,
for all fundamental weights wy, in type A. Let us show that a similar phenomenon
occurs for minuscule weights in other types as well. A dominant weight A is called
minuscule if the set of weights in the G-module V), is in the orbit W - X of the Weyl

group.
Lemma 16.2. Let A € A*. Then v_y € W if and only if X is a minuscule weight.

Proof. Let (B1,...,0) be a reduced A-chain of roots, and let (r1,...,7;) be the
corresponding A-chain of reflections. According to Lemmas and B2 the follow-
ing statements are equivalent: (1) v_x € W; (2) 71,...,7 € W; (3) all (positive)
roots fB,..., 0 are distinct; (4) (A,a¥) = 0 or 1, for any o € ®+. According to
Corollary B8 the condition 71, ..., € W implies that all weights in V) are in the
W-orbit W - X and, thus, A is minuscule. On the other hand, if A is minuscule, then
(A, a¥) =0or 1, for any o € ®*. Otherwise, if (A\,a") > 2, then V) contains the
weight A —a &€ W - A O

The last two examples concern minuscule weights in types B and C. Recall that
the element v_, is uniquely defined by the condition v_yx(p/hY) = p/hY — X. If
v_x € W, then we can write this condition as v_x(p) = p — h¥ A.

Example 16.3. Suppose that ® is of type C,.. This root system can be embedded
into R” as follows: ® = {£e;+¢;, +2¢; | i # j}, where &1, ..., &, are the coordinate
vectors in R". The simple roots are a; = €1 —¢€9, g = €3 —€3, ... Qp_1 = Ep—1 —Ep,
a, = 2¢,. The Weyl group W is the semidirect product of S, and (Z/2Z)". It acts
on R” by permuting the coordinates and changing their signs. The fundamental
weights are wy, = 1+ -+, k=1,...,rand p = (r,...,1) € R". The dual
Coxeter number is 1Y = (p,0Y) + 1 = 2r.

Suppose that A = w;. Then p — hVw; = (—r,r — 1,7 — 2,...,1) € R". This
weight is obtained from p by applying the Weyl group element ss., that changes
the sign of the first coordinate. Thus v_,,, = 52, € W C Wag. The only reduced
decomposition of this element is v_,,, = 81+ 8p_1 87 Sp—1 - 81,50 £(vV_y, ) = 2r—1.
This reduced decomposition corresponds to the wi-chain

(a1, s1(ag), s182(@s), ...y S1...Sp—1(Qr), ..oy S1...80...82(1)) =
(61 —€2, €1 —€3, -=+, €1 — &y, 261, €146, -+, €1+ €3, €1 +E2),
cf. Definition B4l The operator R“l is given by
R[M] = R€1+€2R61+€3 o 'R€1+€7~R261R€1—€7~ T R51_53R51_52 .
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Example 16.4. Suppose that ® is of type B,.. This root system can be embedded
into R” as follows: ® = {+e; +¢;, +e; | ¢ # j}, where €1,. .., &, are the coordinate
vectors in R". The simple roots are a3 = €1 —¢€9, g = €3—€3, ... Qp_1 = Ep—1 —Ep,
ar = g.. The Weyl group W and its action on R" are the same as in type C,. The
fundamental weights are wy, = &1+ +eg, k=1,...,r—1, and w, = %(sl—i—- cter).
We have p = (r— .,1—2) € R". The dual Coxeter number is h" = (p,0¥)+1 =
2r.

Suppose that A = w, is the last fundamental weight. Then p—h"w, = (—%, —-1-
%, -2 — %, ceey T+ %) € R". This weight is obtained from p by applying the Weyl
group element v_, € W C Wyg that reverses the order of all coordinates and
changes their signs. The element v_,, € W has length ¢(v_,, ) = r(r +1)/2. One
of the reduced decompositions for this element is

1
25

V_w, = (80)(8r—18r)(Sr—28r—18:) (52 8.)(81 " 5p).

The associated w,-chain is (o, $r(@r—1), $rSr—1(), $pSr—18r(r—2), ...). We can
explicitly find the roots in this w,-chain and write the operator R“"] as

R[M] = (R€1 R€1+€2 Ral +es 7 'Ral +€7‘)(R€2 R82+€3 R82+€4 T R52+€7‘) T
o (R€r72 R5T72+€7‘71 Ranz-i-aT )(Rgrfl R€r71+aT)(R8T)-

17. QUANTUM K-THEORY

In this section, we conjecture a natural Chevalley-type formula in the quan-
tum K -theory of G/B. The quantum K-theory, which is a K-theoretic version of
quantum cohomology, was introduced by Lee [Le€]. The quantum K-theory of flag
varieties, in particular, has been first studied by Givental and Lee [GiLe]. We recall
a few basic facts below.

Let us denote by QK (G/B) the quantum K-theory of G/B. In order to describe
it, we associate a variable ¢; to each simple root «;, and let Z[q] = Z[q1,- - -, g
be the polynomial ring in the ¢;. Given a collection of nonnegative integers d =
(di,...,d,), called multidegree, we let ¢ := ¢ ...¢%. As a Z[g]-module, the
quantum K-theory is defined as QK (G/B) := K(G/B) ®zZ|q]. Let [w] denote the
class of the structure sheaf of the Schubert variety X, .. Then the classes of [w]
form a Z[q]-basis of QK (G/B). The multiplication in QK (G/B) is a deformation
of the classical multiplication:

[Wof] = q" > Ni(d)[w],
d

weW

where the first sum is over all multidegrees d, and N (d) is the quantum K-
invariant of Gromov-Witten type for [u], [v], and the quantum dual of [w]. As
defined in [Le€], this invariant is the K-theoretic push-forward to Spec C of some
natural vector bundle on the moduli space M3 o(G/B, d) (via the orientation defined
by the virtual structure sheaf). The associativity of the quantum K-product was
established in [Le€], based on a sheaf-theoretic version of an argument of WDVV-
type.

Let us recall the Chevalley-type formula for the small quantum cohomology
ring QH*(G/B) of G/B. For type A, this formula was first proved in [FGP].
In general type, it was proved by D. Peterson (unpublished) and by Fulton and
Woodward [EuWo| (who, in fact, obtained a more general formula for G/P). Again,
as a Z[g]-module, QH*(G/B) := H*(G/B) ® Z[q]. Thus, the quantum cohomology
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ring has a Z[g]-basis basis given by the cohomology classes of X, ., which we
denoted by (w).

The Chevalley-type formula in QH*(G/B) can be stated using the quantum
Bruhat operators defined in [BEP]. These are operators on the group algebra
Z[q][W] of the Weyl group W over Z[q]. For each positive root «, the quantum
Bruhat operator @, is defined by

WS, if l(wsy) =L(w)+1,
Qa(w) =3 ¢ ws, if L(wsy) = L(w) — 2ht(a¥) + 1,
0 otherwise,

where ht(a") = (p,a) is the height of the coroot aV, and ¢*(®) = ¢ ... ¢4 for
avV = diay + -+ dray, ie., di = (wi,aV). Also define Q, := —Q_, if @ is a
negative root. It was proved in [BEP] that the operators @, satisfy the Yang-Baxter
equation.

The map w — (w) extends linearly to the isomorphism Z[g|[W] — QH*(G/B)
of Z|g]-modules, for which we use the same notation a — (a). Similarly, we extend
the map w — [w]. The Chevalley formula in quantum cohomology can now be

stated, as follows, see [FuWol [BEP].

(17.1) (i) (w) = D (Wi @) (Qa(w)),
acdt
where s; is a simple reflection and # denotes the product in QH*(G/B).
Based on Corollary and ([CZTl), we formulate the following conjecture.

Conjecture 17.1. Fix a simple reflection s;. Let (81,...,0;) be an w;-chain of
roots. Then we have

[si] o [w] = [(1 = (1= Qp,) - (1= @g))(w)],
where o denotes the product in the ring QK (G/B).

The conjectured formula in QK (G/B) specializes to Corollary [L2 upon setting
g1 = - = q- = 0. It also specializes to QH-Chevalley formula ([[Z1l), upon
taking the linear terms in the expansion of the operator 1 — (1 —Qga,)--- (1 —Qg,),
cf. Remark 34 We can extend this conjecture to the quantum T-equivariant K-
theory of G/B, see [Lee] for the definition of the ring QK7 (G/B). We conjecture
that the operator of multiplication by the class [s;] in this ring is 1 — xwo(“’i)Rt[I_wi],
where the operator R([I_wi] is obtained from R~ by replacing all Bruhat operators
Bg with the quantum Bruhat operators Qs, cf. Theorem [3Jl It is not hard to
extend this conjecture to generalized partial flag varieties G/P, as well.

A possible approach to proving this conjecture would be an extension of the geo-
metric argument in [FuWo|] from quantum cohomology to quantum K-theory. On
the other hand, in classical types it might be possible to find an essentially algebraic
proof in the spirit of the proof of the quantum Chevalley formula from [EGP].

18. APPENDIX: FOLDINGS OF GALLERIES, LS-GALLERIES, AND LS-PATHS

In this appendix, we introduce admissible foldings of galleries, and use this notion
to reformulate our model for the characters of the irreducible representations (Corol-
lary B0) and for the Demazure characters (Corollary [EH). For regular weights,
admissible foldings of galleries are similar, but not equivalent, to the LS-galleries
of Gaussent and Littelmann [GaLi]. We clarify this relationship by showing that it
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is based on Dyer’s theorem [Dyer] about the EL-shellability of the Bruhat order.
Then we compare the computational complexity of our model for characters with
that of the model based on LS-paths and root operators.

18.1. Admissible foldings.

Definition 18.1. A gallery is a sequence v = (Fy, Ao, F1, A1, Fa, ..., Fi, Aj, Fi41)
such that Ao, ..., A; are alcoves; F} is a codimension one common face of the alcoves
Aj_1 and Aj, for j =1,...,1; Fy is a vertex of the first alcove Ay; and Fj4; is a
vertex of the last alcove A;. Furthermore, we require that Fy = {0} and Fj11 = {u}
for some weight p € A, which is called the weight of the gallery. We say that a
gallery is unfolded if A;_1 # A;, for j=1,...,1.

These galleries are special cases of the generalized galleries in [Galil.

In this subsection, we will consider only galleries such that Ay = A, is the
fundamental alcove. Unfolded galleries of weight u with Ag = A, are in one-to-one
correspondence with alcove paths (4o, ..., 4;) such that ;1 € A;. Indeed, F; should
be the unique common wall of two adjacent alcoves A;_; and A, for j =1,...,1.

Definition 18.2. Let us say that a gallery - of weight p is reduced if Ag = A,, and
~ has has minimal length among all galleries of weight u with Ag = A,. Clearly,
every reduced gallery is unfolded.

Lemma 18.3. Let A\ be a dominant weight. Then the last alcove in a reduced
gallery of weight —\ is Ay = A_x. Hence, reduced galleries with an anti-dominant
weight —\ are in one-to-one correspondence with reduced alcove paths from A, to
A_», which, in turn, correspond to reduced decompositions of v_\ € Wag.

Proof. The number of hyperplanes H, j that separate the point E = {—A} from
the fundamental alcove A, is m = Y 4+ (A, @"). Thus, the length of any alcove
path from A, to an alcove A; with vertex E should be at least m. The number
m is precisely the length of a reduced alcove path from A, to A_). On the other
hand, for any other alcove A’ # A_, such that F is a vertex of A’, the number of
hyperplanes that separate A’ from A, is strictly greater than m. O

For a gallery v = (Fp, Ao, F1,...,F1, A), Fiyq), let r1,...,1 € Wag denote
the affine reflections with respect to the affine hyperplanes containing the faces
Fi,...,F. For j =1,...,1, let the j-th tail-flip operator f; be the operator that
sends the gallery v = (Fy, Ao, F1, ..., Fi, Ai, Fi41) to the gallery f;(v) given by

fj(’}/) = (Fo,AQ,Fl,Al,...7Aj_1,FJ{ = Fj,A;,FJ{Jrl,A;-Jrl,..., ;,F}/Jrl),

where A := r;(4;) and F} := rj(F;), for i = j,...,l + 1. In other words, the
operator f; leaves the initial segment of the gallery from Ay to A;_; intact and
reflects the remaining tail by r;. Clearly, the operators f; commute. Hence, they
determine an action of the group (Z/2Z)! on galleries. Every gallery is obtained
from an unfolded gallery by applying several tail-flips. Equivalently, using the
operators f;, one can always transform (unfold) an arbitrary gallery into a uniquely
defined unfolded gallery.

Lemma 18.4. If v is a gallery of weight p1, then f;, -+ f;,(7) is a gallery of weight
T ...Tjs(/'l’)7 Jorany 1 <ji1 <--- <js <L

Proof. First, let us apply f;, to v. We obtain a gallery of weight r;, (1). Applying
the tail-flip f;, , to f;, (v) changes its weight to r;,_,7;, (1), etc. O
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Definition 18.5. Let v be an unfolded gallery, and let r1,...,r; be the affine
reflections with respect to the faces of «v. An admissible folding of «y is a gallery of
the form f;, - -- f;.(y) for some 1 < j; < --- < jg <1 such that

1 LTy LTy Ty << T Ty + 0 T

is a saturated increasing chain in the Bruhat order on the Weyl group W. More
generally, for u € W, a u-admissible folding of «y is a gallery of the form f;, --- f;, ()
for some 1 < j; < -+ < js <[ such that

u>ufj1 >u77j177j2 > >U7:j17:j2 .'.fjs
is a saturated decreasing chain in the Bruhat order on the Weyl group W. We allow

s = 0, so the gallery ~ itself is an admissible (u-admissible) folding of v. Notice
that admissible foldings are precisely wo-admissible foldings.

We can also give the following intrinsic characterization of u-admissible foldings.

Lemma 18.6. Let v = (Ap, Fy,...,F/, A}, E’) be a gallery, and r,...,r] be the
affine reflections with respect to the faces Fy, ..., F]. Let {j1 < --- < js} ={j €
{10y [ AL, = Al}. Then the gallery v is a u-admissible folding of some
unfolded gallery ~v if and only if

—1 —/ —1 = =l —1 = =/ —/ —1
U BT U BT T, U P BT T T U

is a saturated decreasing chain in the Bruhat order on the Weyl group W.

Proof. We have v = fj, -+ f;, (7). Let r1,...,r; be the reflections with respect to
the faces of the unfolded gallery . Then

! . . ! o . . . ! _ . . . . )
Tir = Tirs T = TiT52T51s Ty = Tj1Tja 5352 g1 - -

is implies 7 7’ o= (s s s )L —
This implies 75 75, -~ 7% = (rjrj, -~ 75)7", for i = 1,...,5. Now the lemma

follows from Definition [[X.H O

Corollaries and are equivalent to the following claim. Let weight(~)
denote the weight of a gallery ~.

Corollary 18.7. Let A be a dominant weight, and let v be a reduced gallery with
weight(y) = —A.
(1) The character ch(Vy) is equal to the sum

ch(Vy) = Ze_W"ight(V/)
’Y/

over all admissible foldings v' of the gallery ~.
(2) Let w € W. The Demazure character ch(Vy ) is equal to the sum

ch(Va) = 3 emulweisht(s)

,Y/

over all u-admissible foldings ' of the gallery .
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18.2. LS-galleries. In this section, we discuss the relationship between admissible
foldings and LS-galleries of Gaussent and Littelmann in case of a regular weight
A. We show that LS-galleries can be associated with admissible foldings of some
special reduced galleries.

We start by recalling some terminology from [Gali]. Let us fix a dominant
regular weight A. Let us say that a gallery v of weight A is minimal if v crosses
only the hyperplanes strictly separating 0 and A. Note that in such a gallery we
have Ay = Ao, and the last alcove A; is wo(A4s) + A = —As + .

Recall that the facets of the fundamental alcove are H; = H,, 0, fori=1,...,7;
and Hy = Hy,,—1. If F is a face of the fundamental alcove A,, we define its type
by

type(F)={i| F C H;,i=0,1,...,7}.
For instance, type({0}) = {1,...,r} and type(4,) = 0. For an arbitrary face F, its
type is defined as type(F’), where F’ is the unique face of A, such that F = w(F")
for some w in Wog. The type of a gallery v = (Fy, Ao, Fi, ..., A, Fi41) is defined
as type(7) = (type(Fo), type(Ao), - - . , type(Fi4+1)).

For a gallery v = (Fo,Ao,Fl,. ..,Al,ﬂJrl), let {.]1 < ... < ]5} = {] | Aj,1 =
Aj}, and let r; be the reflections with respect to the hyperplanes containing the
faces Fj. The companion of v is the sequence (uo, ..., us) of elements in W, where
uo € W is the unique element such that u(As) = Ao; and w; = 7j,u—1, for i =
1,...,s.

Definition 18.8. [GaLi] For a minimal gallery v of a (dominant regular) weight
A, the set T'g(7y) of LS-galleries associated with - is the set of all galleries 4/ such
that (1) type(y’) = type(v); and (2) the companion (ug, ..., us) of 7/ is a saturated
decreasing chain in the Bruhat order on W.

The general definition of LS-galleries given is [Gali] for arbitrary dominant
weights A\ is more complicated. They are defined as certain collections of faces
of alcoves that satisfy several conditions, including some positivity and dimension
conditions. The companion of such a gallery is a chain in the Bruhat order on the
quotient W/W). For regular weights, the definition of LS-galleries from [Gali| is
equivalent to the simplified definition above.

It was shown in [Gali] that, for a minimal gallery v of weight A,

R = Y e,
7' €TLs(v)

Let us now clarify the relationship between Corollary[[87 (1) and this statement.

Let us say that a gallery of v = (Fy, Ao, Fi1,..., A, Fiy1) is special if | > N =
|®T| (the number of positive roots) and all alcoves Ao, ..., Ay and faces Fi, ..., Fxy
are adjacent to the origin 0. Let us define the transformation

t : {special galleries of weight —u} — {galleries of weight u}.

For a special gallery v = (Fo, Ao, F1, ..., A;, F141) of weight —pu, the gallery ¢(v) is
defined as follows: (1) remove the first N alcoves Ao, ..., Ay_1 from the gallery
together with the faces Fi,. .., Fy; (2) translate all remaining alcoves and faces by
the weight u; (3) reverse the sequence of alcoves and faces in the gallery. In other
words,

t: (F07A07'-'7Alaﬂ+l)’_)(ﬂ+1 +,UJ5AI+,UJ5"'7FN+1+,u7AN+,UJaF0+:u)7
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If v = (Fo, Ao, F1, ..., A1, Fi41) is a special reduced gallery of weight —\ (Defi-
nition [87), then Ay = wo(As) and F; C Hg, o, for i = 1,..., N. All foldings of
are also special. The image t(7) of v is a minimal gallery of weight A\. Moreover,
all minimal galleries are of this form. Notice that, for a regular weight A\, we can
always find a special reduced gallery of weight —\.

Proposition 18.9. Let v be a special reduced gallery of weight —\, where X is a
regular weight. Then the map v +— t(') is a bijection between the set of admissible
foldings of v and the set Trs(t(vy)) of LS-galleries associated with t(v). Moreover,
we have weight(t(v')) = —weight(v').

The proof of this proposition is based on the following fundamental (and non-
trivial) result, which expresses the EL-shellability of the Bruhat order on a Weyl
group, and is closely related to the Verma theorem [Ver]. This result was proved
for an arbitrary Coxeter group in [Dyer}, Proposition 4.3]. We also refer to [BEP,
Theorem 6.4] for a new approach and a different generalization. Recall that reflec-
tion orderings [Huml, [Dyer] are total orders on roots in ®* that are associated with
reduced decompositions we = $;, ... S, for w,, as follows:

iy < Siy (aiNfl) < < SinSiy_q - siz(ail) .

Proposition 18.10. [Dyer, [BEP] Fiz a reflection ordering 1 < --- < Bn. For
any Weyl group element w, there is a unique saturated increasing chain in Bruhat
order from 1 to w of the form

(18.1) 1 <sg, <sp;,88, <...<Sg, ...S8, =w,
where 1 <j1 <...<jp, <N.

Proof of PropositionI83 Let ' be an arbitrary admissible folding of v. Every
tail-flip operator f; preserves the type of 4/, that is, type(y’) = type(f; (7)), and
changes its weight by a multiple of a root. Hence, the transformation ¢ applied to
~' can be viewed as a composition of the translation by A with a translation by an
element of the root lattice. Note that the second translation is an element of Wg.
Recalling that + is mapped to () via the translation by A, we conclude that the
gallery t(’) has the same type as t(7).

Let us now examine the companion of ¢(y'). Let r1,...,r; and r{,...,r] be the
affine reflections with respect to the faces of v and +/, respectively. Let p be such
that j, < N and j,11 > N. Assume that ' = f;, --- f;,(7), where j1 < --- < js,
SO

I< Tjy KT Ty <o <TG Ty oo T
is a saturated decreasing chain in the Bruhat order. The companion of ¢(v’) is the
sequence

- = = = = = =
(uo =Tjy « . T,y Tj U0, Ty, T5 Uoy <y Ty T U) -
ince 1 1 A —
But since ) %, -1 = (rj,rj, - -rj,) 70, fori = 1,..., s (see the proof of Lemma

[[¥H), the companion of ¢(7') is the sequence

(fjl B A T o S O ...Fjp),
which is a saturated decreasing chain in Bruhat order. We have thus shown that
the image of map t is contained in I'p g (7).
It suffices to construct the inverse map. Recall that the first N faces F; of T’
satisfy F; C Hpg, 0. This gives a reflection ordering 8; < --- < By, according to
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Lemma Given a gallery 7" in I'Ls(t(7y)), assume that its companion ends at
some w in W. According to Proposition [T there is a unique way of writing
w=sg, ...s3, for1<j <...<j, <N, such that ([IZI]) holds.

Let us now relabel the faces of 4" as follows: (F} ,, A}, F}, Aj_{, F/_;,...).
Let {jp+1 < ... < js} = {j | Aj_; = A}}. We associate with 7" the gallery
Jiv - JipLipsr - - - fi. (7). The facts stated above imply that this construction gives
the inverse map to t. 0

Remark 18.11. (i) For a nonregular weight A, it is not clear how to associate LS-
galleries with our admissible foldings.

(ii) According to [GaLi], one can associate a collection of continuous piecewise-linear
Littelmann paths with the set of LS-galleries I'g(y) by connecting the centers of
faces in the galleries. In [LePd], we will discuss other ways to associate Littelmann
paths to our admissible foldings of a gallery.

18.3. Comparison of computational complexities. We conclude with a com-
parison between the computational complexities of our construction and the con-
struction of LS-paths based on root operators.

Fix a root system of rank r with N positive roots, a dominant weight A, and
a Weyl group element u of length I. We want to determine the character of the
Demazure module V) ,. Let d be its dimension, and let L be the length of the
affine Weyl group element v_» (that is, the number of affine hyperplanes separating
the fundamental alcove A, and A, — A). Note that L = 2(\,pY), where p¥ =
%Z Bea+t BY. We claim that the complexity of our character formula is O(dIL).
Indeed, we start by determining an alcove path via the method described at the
end of Section [l which involves sorting a sequence of L rational numbers. The
complexity is O(L log L), and note that log L is, in general, much smaller than d
(see below for some examples). Whenever we examine some subword of the word
of length L we fixed at the beginning, we have to check at most L — 1 ways to add
an extra reflection at the end. On the other hand, in each case, we have to check
whether, upon multiplying by the corresponding nonaffine reflection, the length
decreases by precisely 1. The complexity of the latter operation is O(l), based
on the Strong Exchange Condition [Huml, Theorem 5.8]. Then, for each “good”
subword, we have to do a calculation, namely applying at most 2[ affine reflections
to —A. In fact, it is fairly easy to implement this algorithm.

Now let us examine at the complexity of the algorithm based on root operators
for constructing the LS-paths associated with A. In other words, we are looking
at the complexity of constructing the corresponding crystal graph. We have to
generate the whole crystal graph first, and then figure out which paths give weights
for the Demazure module. For each path, we can apply 7 root operators. Each path
has at most N linear steps, so applying a root operator has complexity O(N). But
now we have to check whether the result is a path already determined, so we have to
compare the obtained path with the other paths (that were already determined) of
the same rank in the crystal graph (viewed as a ranked poset). This has complexity
O(NM), where M is the maximum number of elements of the same rank. Since we
have at most N + 1 ranks, M is at least d/(N + 1). In conclusion, the complexity
is O(drNM), which is at least O(d?r).

Let us get a better picture of how the two results compare. Assume we are in
a classical type, and let us first take A to be the i-th fundamental weight, with ¢
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fixed, plus u = w,. Clearly [ is O(r?), L is O(r), and d is O(r?), so the complexity
of our formula is O(r**3). For LS-paths, we get at least O(r**!). So the ratio
between the complexity in the model based on LS-paths and our model is at least
O(ri=2).

Let us also take A = p. In this case d = 2V, and a simple calculation shows
that L is O(r®). Our formula has complexity O(2V7%), while the model based on
LS-paths has complexity at least O(22Vr). So the ratio between the complexities
is at least O(2Y /r*), where N is r(r +1)/2, 72, and 7? — r in types A, B/C, and
D, respectively.
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