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AFFINE WEYL GROUPS IN K-THEORY AND

REPRESENTATION THEORY

CRISTIAN LENART AND ALEXANDER POSTNIKOV

Abstract. We give an explicit combinatorial Chevalley-type formula for the
equivariant K-theory of generalized flag varieties G/P . The formula implies a
simple combinatorial model for the characters of the irreducible representations
of G and, more generally, for the Demazure characters. The construction is
given in terms of a certain R-matrix, that is, a collection of operators satisfying
the Yang-Baxter equation. It reduces to combinatorics of decompositions in
the affine Weyl group and enumeration of saturated chains in the Bruhat
order on the (nonaffine) Weyl group. The formula implies several symmetries
of coefficients in the equivariant K-theory. We derive a Pieri-type formula and
a dual Chevalley-type formula for this ring. The paper contains some other
applications and examples. Finally, we conjecture a Pieri-type formula for the
quantum K-theory of G/B. The proofs are completely combinatorial.
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1. Introduction

The Chevalley formula [Chev] from Schubert calculus expresses the products of
the classes of Schubert varieties with the classes of certain line bundles in the coho-
mology ring of the generalized flag variety G/B, where G is a complex semisimple
Lie group and B is a Borel subgroup. This formula implies a rule for products
of special Schubert classes with arbitrary Schubert classes, known as Monk’s rule
in type A. Fulton and Lascoux [FuLa] extended this formula to the equivariant
Grothendieck ring KT (SLn/B) of the classical flag variety, using combinatorics of
Young tableaux, cf. [Len] for another Monk-type formula in K(SLn/B). Pittie and
Ram [PiRa] extended the Chevalley formula to the equivariant Grothendieck ring
KT (G/B) using LS-paths, which are special cases of Littelmann paths. However,
the Pittie-Ram formula is often hard to use for explicit calculations. It works for
dominant weights only and involves some nontrivial recursive procedures. In this
article, we present a simple nonrecursive combinatorial Chevalley-type formula for
products in the equivariant Grothendieck ring KT (G/P ), where P is a parabolic
subgroup in G. Our formula implies a nonnegative combinatorial model for the
characters of the irreducible representations of G and for the Demazure characters.
This model is more efficient computationally than other known models for charac-
ters, such as the Littelmann path model. Our formula easily explains two symme-
tries of Chevalley coefficients in the equivariant K-theory, clarifies their connection
with a Pieri-type formula in this ring, and implies positivity (or negativity) of these
coefficients. One of these symmetries was earlier derived by Brion [Brion] using a
nontrivial geometric argument. Our formula is based on a collection of operators
that satisfy the Yang-Baxter equation. Its proof is completely elementary. It does
not rely on any geometric arguments. It just uses combinatorics of the affine Weyl
group and some algebraic manipulations with R-matrices and Demazure operators.

Littelmann paths give a model for the characters of the irreducible representa-
tions Vλ of G. Littelmann [Lit1, Lit2] showed that the characters can be described
by counting certain continuous paths in h∗R. These paths are constructed recursively
starting with an initial one, by using certain operators acting on them, which are
known as root operators. By making specific choices for the initial path, one can
obtain special cases which are described combinatorially. One such class of paths,
corresponding to a straight line initial path, is known as the class of Lakshmibai-
Seshadri paths (LS-paths). These paths were introduced before Littelmann’s work,
in the context of standard monomial theory [LaSe]. They have a nonrecursive
characterization in terms of the Bruhat order on the quotient W/Wλ of the corre-
sponding Weyl group W modulo the stabilizer Wλ of λ. Recently, Gaussent and
Littelmann [GaLi], motivated by the study of Mirković-Vilonen cycles, defined an-
other combinatorial model for the irreducible characters of a complex semisimple
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Lie group. This model is based on LS-galleries, which are certain sequences of faces
of alcoves for the corresponding affine Weyl group.

A geometric application of LS-paths was given by Pittie and Ram [PiRa], who
used them to derive a Chevalley-type multiplication formula in the T -equivariant
K-theory of the generalized flag variety G/B. Let KT (G/B) be the Grothendieck
ring of T -equivariant coherent sheaves on G/B. According to Kostant and Ku-
mar [KoKu], the ring KT (G/B) is a free module over the representation ring R(T )
of the maximal torus, with basis given by the classes [Ow], w ∈ W , of structure
sheaves of Schubert varieties. Pittie and Ram showed that the basis expansion of
the product of [Ow] with the class [Lλ] of a line bundle, for a dominant weight λ,
can be expressed as a nonnegative sum over certain special LS-paths. The fact that
the product in the Pittie-Ram formula expands as a nonnegative linear combina-
tion was also explained geometrically by Brion [Brion] and Mathieu [Mat]. The
coefficients in the Pittie-Ram formula were identified as certain characters by Lak-
shmibai and Littelmann [LaLi] using geometry. Littelmann and Seshadri [LiSe]
showed that the Pittie-Ram formula is a consequence of standard monomial the-
ory [LLM, LaSe, Lit3], and, furthermore, that it is almost equivalent to standard
monomial theory.

In this paper, we present an alternative simple Chevalley-type formula1 for the
product of [Ow] and [Lλ] in the equivariant Grothendieck ring KT (G/P ). The
formula is based on enumerating certain saturated chains in the Bruhat order on
the corresponding Weyl group W . This enumeration is determined by an alcove
path, which is a sequence of adjacent alcoves for the affine Weyl group Waff of
the Langland’s dual group G∨. Alcove paths correspond to decompositions of
elements in the affine Weyl group into products of generators. Our Chevalley-type
formula is conveniently formulated in terms of a certain R-matrix, that is, in terms
of a collection of operators satisfying the Yang-Baxter equation. We express the
operator Eλ of multiplication by the class of a line bundle [Lλ] as a composition
R[λ] of elements of the R-matrix given by a certain alcove path. In order to prove
the formula, we simply verify that the operators R[λ] satisfy the same commutation
relations with the elementary Demazure operators Ti as the operators Eλ.

Our equivariant K-theory Chevalley formula has the following nice features.

• The formula works for line bundles corresponding to arbitrary weights. The
Pittie-Ram formula works for dominant weights only. Note that several
applications require to work with nondominant weights.

• For dominant weights λ, our formula implies a simple combinatorial model
for the characters of the irreducible representations Vλ and for the De-
mazure characters ch(Vλ,w).

• The formula is equally simple for regular and nonregular weights. Note
that the definitions of LS-paths and LS-galleries are more complicated for
nonregular weights. There are some extra choices involved that add to their
computational complexity. Furthermore, the Pittie-Ram formula and stan-
dard monomial theory require Deodhar’s lift operators W/Wλ → W from
cosets modulo Wλ, which are defined by a nontrivial recursive procedure
[Deo2]. The picture becomes even more complicated for G/P when, besides

1Notational remark: We call a rule for [Lλ]·[Ow] a Chevalley-type formula and reserve the term
Pieri-type formula for a rule for products [Ow◦si

] · [Ow] of special classes [Ow◦si
] with arbitrary

classes [Ow]. Note that Pittie and Ram called their rule for [Lλ] · [Ow] a Pieri-Chevalley formula.
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Wλ, there is another parabolic subgroup involved. In our construction, no
lift operators are needed, since we are working in W .

• Our formula easily implies a Pieri-type formula for products of the classes
[Ow] with the special classes for codimension one Schubert varieties. Indeed,
the special classes are expressed in terms of the classes of line bundles for
the negative fundamental weights. It is more difficult to apply the Pittie-
Ram formula for this computation, because the latter formula makes sense
for dominant weights only.

• The present model facilitates the study of certain symmetries of coefficients
in the equivariant K-theory, which is not easily carried out based on other
methods.

• Our formula immediately implies the dual Chevalley-type formula for prod-
ucts of [Lλ] with elements of the dual basis to {[Ow] | w ∈W}.

• The independence of our formula from the choice of an alcove path follows
from the fact that the R-matrices used in the construction satisfy the Yang-
Baxter equation. No such explanation is available for the other models.

• The proof of the formula is completely algebraic/combinatorial.

As a preview of our main result, let us present here a formula for the product
[Lλ] · [Ow] of classes in the usual (nonequivariant) Grothendieck ring2 K(G/B).
Let A be the affine Coxeter arrangement for the Langland’s dual group G∨. The
regions of A, called alcoves, correspond to the elements of the affine Weyl group
Waff . Fix a weight λ. Let π(t) be a continuous path in h∗R that connects a point
π(0) inside the fundamental alcove with the point π(1) = π(0) − λ. Assume that
π(t) does not pass through pairwise intersections of hyperplanes in A. As t changes
from 0 to 1, the path π(t) crosses the hyperplanes H1, . . . , Hl ∈ A. Let βi be the
root perpendicular to Hi with the opposite orientation to the path π(t). We call a
sequence of roots (β1, . . . , βl) obtained in such a way a λ-chain. Actually, λ-chains
are in a bijective correspondence with decompositions of a certain element v−λ of
the affine Weyl group into products v−λ = si1 · · · sil

of the generators of Waff .
For positive roots α ∈ Φ+, let us define the Bruhat operators Bα that act on the

Grothendieck ring K(G/B) by

Bα : [Ow] 7−→

{
[Owsα

] if ℓ(wsα) = ℓ(w) − 1,

0 otherwise.

Also let B−α = −Bα. These operators are specializations of the quantum Bruhat
operators from [BFP]. The operators 1 +Bα satisfy the Yang-Baxter equation.

Theorem 1.1. (K-theory Chevalley formula) Let λ be any weight (dominant or
nondominant, regular or nonregular). Let (β1, . . . , βl) be a λ-chain. Then, for any
w ∈ W , we have

[Lλ] · [Ow] = (1 +Bβl
) · · · (1 +Bβ1

)([Ow ])

in the Grothendieck ring K(G/B).

The number of times a root α appears in the λ-chain (β1, . . . , βl) minus the
number of times −α appears in the λ-chain equals (λ, α∨). Thus the linear part of
the expansion of (1+Bβl

) · · · (1+Bβ1
) is precisely

∑
α>0(λ, α

∨)Bα. This linear part

2The ring K(G/B) is not related to Russian security services.
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produces the classical Chevalley formula for products of classes in the cohomology
ring H∗(G/B).

We say that a λ-chain is reduced if it has minimal possible length. Reduced
λ-chains correspond to reduced decompositions in the affine Weyl group. If λ is
a dominant weight, then all roots in a reduced λ-chain are positive. In this case,
Theorem 1.1 involves only positive terms. If λ is an anti-dominant weight, then all
roots in a reduced λ-chain are negative. In this case, the sign of the coefficient of
[Ow] in [Lλ] · [Ou] equals (−1)ℓ(u)−ℓ(w), and Theorem 1.1 gives a subtraction-free
expression for this coefficient.

Let s1, . . . , sr be the system of simple reflections in the Weyl group (compati-
ble with our choice of Borel subgroup), let ω1, . . . , ωr be the corresponding set of
fundamental weights, and let w◦ be the longest element in W . The special classes
[Ow◦si

] ∈ K(G/B) for codimension one Schubert varieties can be expressed as
[Ow◦si

] = 1−[L−ωi
]. Note that (β1, . . . , βl) is a λ-chain if and only if (−βl, . . . ,−β1)

is a (−λ)-chain.

Corollary 1.2. (K-theory Pieri formula) Let us fix a simple reflection si. Let
(β1, . . . , βl) be an ωi-chain. Then, for any w ∈W , we have

[Ow◦si
] · [Ow] = (1 − (1 −Bβ1

) · · · (1 −Bβl
))([Ow ])

in the Grothendieck ring K(G/B).

The special classes [Ow◦si
] generate the Grothendieck ringK(G/B). Thus Corol-

lary 1.2 gives a complete characterization of the multiplicative structure of the
Grothendieck ring.

Our construction was developed independently of the LS-galleries of Gaussent
and Littelmann [GaLi]. Learning about the latter prompted us to subsequently
reformulate the model for characters of Vλ that follows from our formula by using
admissible foldings of galleries. For regular weights, our admissible foldings are
similar (but not equivalent!) to LS-galleries. However, for nonregular weights,
these two models diverge. Our model is simpler and more efficient computationally
than the models based on LS-paths and LS-galleries. It eliminates several choices
that appear in the definitions of LS-galleries and LS-paths. Also it is harder to
work with sequences of lower dimensional faces of alcoves (LS-galleries) than with
reduced decompositions in the affine Weyl group (our model). Note that we cannot
discard the case of nonregular weights as something of less importance than regular
weights. The fundamental weights, which are highly nonregular, are, in a sense,
the most important weights for our purposes. Indeed, these weights appear in
Pieri-type product formulas. Also note that LS-galleries were not applied to the
Demazure characters and to the K-theoretic Chevalley formula.

In a forthcoming publication [LePo], we are planning to develop the combinato-
rial model introduced in this paper entirely within representation theory, describe
root operators, derive an explicit Littlewood-Richardson rule for decomposing ten-
sor products of irreducible representations, and investigate the relationship of this
model with the Littelmann path model.

The general outline of the paper is as follows. In Section 2, we review basic
notions related to roots systems and fix our notation. In Section 3, we present
some background on the Grothendieck ring KT (G/B). In Section 4, we discuss
the relationship between the Grothendieck ring and the Demazure characters. In
Section 5, we remind a few facts about affine Weyl groups. In particular, we show
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that decompositions of affine Weyl group elements correspond to sequences of ad-
jacent alcoves, which we call alcove paths. In Section 6, we state our combinatorial
formula for products in equivariant K-theory, that is, our KT -Chevalley formula.
As a corollary of the KT -Chevalley formula, we obtain a combinatorial model for
the characters of the irreducible representations Vλ and for the Demazure charac-
ters. In Section 7, we extend the KT -Chevalley formula to equivariant K-theory of
G/P . In Section 8, we present several applications of our KT -Chevalley formula.
We derive the KT -Pieri formula for the product of an arbitrary class [Ow] with
a special class [Ow◦si

]. We gave the dual KT -Chevalley formula. Then we study
two symmetries of the coefficients in the KT -Chevalley formula. In the following
sections, we develop tools needed to reformulate our rule in a compact operator
notation and to prove this rule. In Section 9, we discuss the Yang-Baxter equa-
tion. In Section 10, we construct a certain R-matrix and show that it satisfies the
Yang-Baxter equation. In Section 11, we derive commutation relations between
the elements of the R-matrix and the Demazure operators Ti. These commuta-
tion relations are the core of the proof of our formula. In Section 12, we define
compositions R[λ] of elements of the R-matrix. We use tail-flips of alcove paths to
prove that the operators R[λ] satisfy the same commutation relations with Ti as
the operators Eλ. In Section 13, we reformulate and prove our main result—the
KT -Chevalley formula—using the R-matrix notation. We show that R[λ] coincides
with the operator Eλ of multiplication by [Lλ] in the Grothendieck ring KT (G/B).
In Section 14, we use central points of alcoves to prove the equivalence of the two
formulations of our main result. In Sections 15 and 16, we give several examples for
types A, B, C, and G2. In Section 17, we conjecture a natural generalization of our
K-theory Pieri formula to quantum K-theory. In Appendix 18, we reformulate our
model for characters using admissible foldings of galleries and compare our model
with LS-galleries and LS-paths.

Acknowledgments: We are indebted to Shrawan Kumar for several geometric
explanations and useful suggestions. We are grateful to V. Lakshmibai for inter-
esting discussions and thoughtful comments. We thank Allen Knutson, Yuan-Pin
Lee, and Andrei Zelevinsky for helpful remarks.

2. Notation

Let G be a connected, simply connected, simple complex Lie group. Fix a
Borel subgroup B and a maximal torus T such that G ⊃ B ⊃ T . Let h be the
corresponding Cartan subalgebra of the Lie algebra g of G. Let r be the rank of
the Cartan subalgebra h. Let Φ ⊂ h∗ be the corresponding irreducible root system.
Let h∗R ⊂ h∗ be the real span of the roots. Let Φ+ ⊂ Φ be the set of positive
roots corresponding to our choice of B. Then Φ is the disjoint union of Φ+ and
Φ− = −Φ+. Let α1, . . . , αr ∈ Φ+ be the corresponding simple roots. They form a
basis of h∗R. Let (λ, µ) denote the nondegenerate scalar product on h∗R induced by
the Killing form. Given a root α, the corresponding coroot is α∨ := 2α/(α, α). The
collection of coroots Φ∨ := {α∨ | α ∈ Φ} forms the dual root system.

The Weyl group W ⊂ Aut(h∗R) of the Lie group G is generated by the reflections
sα : h∗R → h∗R, for α ∈ Φ, given by

sα : λ 7→ λ− (λ, α∨)α.
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In fact, the Weyl group W is generated by the simple reflections s1, . . . , sr corre-
sponding to the simple roots si := sαi

, subject to the Coxeter relations:

(si)
2 = 1 and (sisj)

mij = 1 for any i, j ∈ {1, . . . , r},

where mij is half of the order of the dihedral subgroup generated by si and sj .
An expression of a Weyl group element w as a product of generators w = si1 · · · sil

which has minimal length is called a reduced decomposition for w; its length ℓ(w) = l
is called the length of w. The Weyl group contains a unique longest element w◦
with maximal length ℓ(w◦) = |Φ+|. For u,w ∈ W , we say that u covers w, and
write u ⋗ w, if w = usβ, for some β ∈ Φ+, and ℓ(u) = ℓ(w) + 1. The transitive
closure “>” of the relation “⋗” is called the Bruhat order on W .

The weight lattice Λ is given by

(2.1) Λ := {λ ∈ h∗R | (λ, α∨) ∈ Z for any α ∈ Φ}.

The weight lattice Λ is generated by the fundamental weights ω1, . . . , ωr, which
are defined as the elements of the dual basis to the basis of simple coroots, i.e.,
(ωi, α

∨
j ) = δij . The set Λ+ of dominant weights is given by

Λ+ := {λ ∈ Λ | (λ, α∨) ≥ 0 for any α ∈ Φ+}.

Let ρ := ω1 + · · · + ωr = 1
2

∑
β∈Φ+ β. The height of a coroot α∨ ∈ Φ∨ is

(ρ, α∨) = c1 + · · · + cr if α∨ = c1α
∨
1 + · · · + crα

∨
r . Since we assumed that Φ is

irreducible, there is a unique highest coroot θ∨ ∈ Φ∨ that has maximal height. The
dual Coxeter number is h∨ := (ρ, θ∨) + 1.

3. Equivariant K-theory of generalized flag varieties

In this section, we remind a few facts about the Grothendieck ring KT (G/B).
For more details on the Grothendieck ring, we refer to Kostant and Kumar [KoKu],
see also Pittie and Ram [PiRa].

The generalized flag variety G/B is a smooth projective variety. It decomposes
into a disjoint union of Schubert cells X◦w := BwB/B indexed by elements w ∈W
of the Weyl group. The closures of Schubert cells Xw := X◦w are called Schubert
varieties. We have u > w in the Bruhat order (defined as above) if and only if
Xu ⊃ Xw. Let Ow := OXw

be the structure sheaf of the Schubert variety Xw.
Let Z[Λ] be the group algebra of the weight lattice Λ. It has a Z-basis of for-

mal exponents {eλ | λ ∈ Λ} with multiplication eλ · eµ := eλ+µ, i.e., Z[Λ] =
Z[e±ω1 , · · · , e±ωr ] is the algebra of Laurent polynomials in r variables. The group
of characters X = X(T ) of the maximal torus T is isomorphic to the weight lat-
tice Λ. Its group algebra Z[X ] = R(T ) is the representation ring of T . The rings
Z[Λ] and Z[X ] are isomorphic. (However we will distinguish these two rings.)
Let us denote by xλ the element of Z[X ] corresponding to eλ ∈ Z[Λ]. Thus
Z[X ] = Z[x±ω1 , · · · , x±ωr ]. Let Lλ := G ×B Cλ be the line bundle over G/B
associated with the weight λ, where B acts onG by right multiplications, and the B-
action on Cλ = C is the one-dimensional representation with character x−λ ∈ Z[X ].
(The character x−λ of T extends to B by defining it to be identically one on the
commutator subgroup [B,B]).

Denote by KT (G/B) the Grothendieck ring of coherent T -equivariant sheaves on
G/B. According to Kostant and Kumar [KoKu], the Grothendieck ring KT (G/B)
is a free Z[X ]-module, and the classes [Ow] ∈ KT (G/B) of the structure sheaves
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Ow form its Z[X ]-basis. The classes [Lλ] of the line bundles Lλ also span KT (G/B)
as a Z[X ]-module.

We now discuss the presentation of the Grothendieck ringKT (G/B) as a quotient
of Z[X ]⊗Z[Λ]. The Weyl groupW acts on the group algebra Z[Λ] by w(eλ) := ew(λ).
Let Z[Λ]W be the subalgebra of W -invariant elements. The tensor product Z[X ]⊗
Z[Λ] is the algebra of Laurent polynomials in 2r variables xω1 , . . . , xωr , eω1 , . . . , eωr

with integer coefficients. Let i : Z[Λ] → Z[X ] be the natural isomorphism given by
i(eλ) := xλ. Let I be the ideal in Z[X ]⊗Z[Λ] generated by the following elements:

I :=
〈
i(f) ⊗ 1 − 1 ⊗ f | f ∈ Z[Λ]W

〉
.

The Grothendieck ring KT (G/B) is canonically isomorphic to the quotient ring

(3.1) KT (G/B) ≃ (Z[X ] ⊗ Z[Λ])/I.

The isomorphism is given by the Z[X ]-linear map [Lλ] 7→ eλ, for λ ∈ Λ.
It is possible to express all classes [Ow] as Laurent polynomials in Z[X ]⊗Z[Λ] by

choosing a representative of the class [O1] and by applying Demazure operators, as
described below. The action of the Weyl group on Z[Λ] defined above is extended
Z[X ]-linearly to Z[X ] ⊗ Z[Λ]. For i = 1, . . . , r, the elementary Demazure operator
Ti : Z[X ] ⊗ Z[Λ] → Z[X ] ⊗ Z[Λ] is the Z[X ]-linear operator given by

(3.2) Ti(f) :=
f − e−αisi(f)

1 − e−αi
.

Note that the numerator is always divisible by the denominator3, so the right-hand
side is a valid expression in the algebra Z[X ] ⊗ Z[Λ]. One can verify directly from
the definition that the operators Ti satisfy the following relations:

T 2
i = Ti ,(3.3)

(Ti Tj)
mij = 1 ,(3.4)

Ti(fg) = f · Ti(g), if si(f) = f .(3.5)

Equations (3.3) and (3.4) imply that the operators Ti give an action of the corre-
sponding Hecke algebra Hq specialized at q = 0, e.g., see [Hum]. Equation (3.5)
implies that the operators Ti preserve the ideal I. Thus the elementary De-
mazure operators Ti induce operators acting on the Grothendieck ring KT (G/B) ≃
(Z[X ] ⊗ Z[Λ])/I, which will be denoted by the same symbols.

For a reduced decomposition w = si1 · · · sil
∈ W , the Demazure operator Tw is

defined as the following composition of elementary Demazure operators:

(3.6) Tw := Ti1 · · ·Til
.

The Coxeter relations (3.4) imply that the operator Tw depends only on w, not on
the choice of a reduced decomposition. Equation (3.3) implies that an arbitrary
product Tj1 · · ·Tjm

reduces to Tw for some w ∈ W . Kostant and Kumar [KoKu]
showed that, for any w ∈W ,

(3.7) [Ow] = Tw−1([O1]).

For type A, the elementary Demazure operators Ti are also called isobaric divided
difference operators. The polynomial representatives of the structure sheaves [Ow]
obtained by applying these operators to a certain polynomial representative of [O1]
are the double Grothendieck polynomials of Lascoux and Schützenberger [LaSc].

3Check this for f = eλ.
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The product [Lλ] · [Ou] in the Grothendieck ring KT (G/B) can be written as a
finite sum

(3.8) [Lλ] · [Ou] =
∑

w∈W, µ∈Λ

cλ,µ
u,w xµ [Ow] ,

where cλ,µ
u,w are some integer coefficients. We will call these coefficientsKT -Chevalley

coefficients, because they extend the coefficients in the usual Chevalley formula, as
shown below in this section. In this paper, we present an explicit combinatorial
formula for cλ,µ

u,w, see Theorems 6.1 and 13.1. We will see that cλ,µ
u,w = 0 unless w ≤ u

in the Bruhat order, and that cλ,µ
u,u = δλ,µ. If λ is a dominant weight, then we will

see that all coefficients cλ,µ
u,w are nonnegative. In this case, Pittie and Ram [PiRa]

showed that cλ,µ
u,w count certain LS-paths, cf. also Lakshmibai-Littelmann [LaLi] and

Littelmann-Seshadri [LiSe].
For a weight λ, let Eλ : f 7→ eλf be the operator of multiplication by the

exponent eλ in the ring Z[X ] ⊗ Z[Λ]. The induced operator on KT (G/B), which
will be denoted by the same symbol Eλ, acts as the operator of multiplication by
the class [Lλ] of a line bundle. It follows from the definitions that Eλ and Ti satisfy
the following commutation relation:

(3.9) Eλ Ti = TiE
si(λ) +

Eλ − Esi(λ)

1 − E−αi
.

The quotient in this expression expands as the Laurent polynomial

Eλ − Esi(λ)

1 − E−αi
=

∑

0≤k<(λ,α∨

i
)

Eλ−kαi −
∑

(λ,α∨

i
)≤k<0

Eλ−kαi .

Also, we have

(3.10) Eλ([O1]) = xλ [O1].

Let Ĥ be the ring generated by the operators T1, . . . , Tr and Eλ, λ ∈ Λ. Then
Ĥ is described by relations (3.3), (3.4), and (3.9), i.e., Ĥ is a certain degeneration
of the affine Hecke algebra. This follows from the fact that the elements Tw−1Eµ,
w ∈ W , µ ∈ Λ, form a Z-basis of Ĥ. Indeed, according to the relations, the elements
Tw−1Eµ span Ĥ. On the other hand, these elements are linearly independent,
because Tw−1Eµ([O1]) = xµ[Ow].

Using the commutation relation in (3.9) repeatedly, we obtain, for any u ∈ W

and λ ∈ Λ, the following identity in the ring Ĥ:

(3.11) Eλ Tu−1 =
∑

w∈W, µ∈Λ

cλ,µ
u,w Tw−1 Eµ,

for some integer coefficients cλ,µ
u,w. Applying both sides of this expression to the

class [O1] and using (3.7) and (3.10), we deduce that the coefficients cλ,µ
u,w in (3.11)

are equal to the KT -Chevalley coefficients in (3.8).
The commutation relation (3.9) gives a recursive procedure for calculating the

product [Lλ]·[Ou] in KT (G/B). In this paper, we present a simple nonrecursive rule
for this product. The proof of our rule is based on the following trivial observation,
which is implied by the above discussion.

Lemma 3.1. Let A be an algebra that contains Z[X ], and let K̃ = KT (G/B)⊗Z[X]

A. The action of the Demazure operators Ti extends A-linearly to K̃. Suppose
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that Rλ, λ ∈ Λ, is a family of A-linear operators acting on the space K̃ such that
relations (3.9) and (3.10) hold with Eλ replaced by Rλ. Then the operator Rλ

preserves KT (G/B) ⊂ K̃ and coincides with Eλ for all λ.

Proof. The conditions imply that relation (3.11) holds with Eλ replaced by Rλ.
Applying this expression to [O1], we deduce that Rλ([Ou]) = Eλ([Ou]), for any
u ∈ W . �

Let us also mention another basis of KT (G/B) studied by Kostant and Ku-
mar [KoKu], see also recent paper [GrRa] by Griffeth and Ram. One can easily
check that the map given by ψ : Ti 7→ 1 − Ti, i = 1, . . . , r, and ψ : Eλ 7→ E−λ

is an automorphism of the ring Ĥ. In other words, the operators εi = 1 − Ti, for
i = 1, . . . , r, satisfy relations (3.3), (3.4), and (3.9) with Ti replaced by εi and Eλ

replaced by E−λ. Thus one can correctly define the elements εw := εi1 · · · εil
∈ Ĥ,

for a reduced decomposition w = si1 · · · sil
∈ W . For w ∈ W , let [Iw] be the

element of KT (G/B) given by

(3.12) [Iw] = εw−1([O1]).

According to Kostant and Kumar [KoKu], the elements [Iw], w ∈ W , form a Z[X ]-
basis of KT (G/B). If follows from [KoKu] that the bases {[Iw] | w ∈ W} and
{[Ow] | w ∈W} are related to each other, as follows:

[Iw] =
∑

u≤w

(−1)ℓ(u)[Ou] and [Ow] =
∑

u≤w

(−1)ℓ(u)[Iu].

The fact that these two relations are equivalent to each other is basically the state-
ment of Verma’s result [Ver] about Möbius inversion on the Bruhat order.

The element [Iw] can be described geometrically as the class of the sheaf Iw =
IXw

given by the exact sequence 0 → IXw
→ OXw

→ O∂Xw
→ 0, where ∂Xw =⋃

u<w Xu is the boundary of the Schubert varietyXw. Brion and Lakshmibai [BrLa]
showed that the classes [Iw] form the dual basis to {[Ow] | w ∈ W} with respect to
the natural intersection pairing in K-theory.

Applying the above involution ψ to both sides of (3.11), we obtain

E−λ εu−1 =
∑

w∈W, µ∈Λ

cλ,µ
u,w εw−1 E−µ.

Then applying both sides of this relation to [O1], we immediately deduce the fol-
lowing dual form of (3.8)

(3.13) [L−λ] · [Iu] =
∑

w∈W, µ∈Λ

cλ,µ
u,w x

−µ [Iw],

where cλ,µ
u,w are the same KT -Chevalley coefficients as those in (3.8) and (3.11).

Note that relations (3.3), (3.4), and (3.9) in the algebra Ĥ are equivalent to the
relations obtained from them by reversing the order of all terms. This symmetry
of the relations implies that the expression

(3.14) TuE
λ =

∑

w∈W, µ∈Λ

cλ,µ
u,w Eµ Tw

has the same KT -Chevalley coefficients cλ,µ
u,w.

The (nonequivariant) Grothendieck ring K(G/B) of coherent sheaves on G/B
can be obtained by the specialization xµ 7→ 1, for all µ, i.e., by ignoring all exponents
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xµ in equivariant K-theory. This ring has a Z-basis of the classes [Ow] of the
structure sheaves Ow, w ∈ W . By a slight abuse of notation, we will use the same
symbols [Ow] and [Lλ] for classes in K(G/B) as in equivariant K-theory.

Let us also recall the way in which Schubert calculus in cohomology can be re-
covered from K-theory. Let H∗(G/B) := H∗(G/B,Q) be the cohomology ring of
G/B with rational coefficients. It has a linear basis of classes of Schubert vari-
eties [Xw], w ∈ W , called Schubert classes. The cohomology ring is 2Z-graded by
deg([Xw]) = 2(ℓ(w◦) − ℓ(w)). Let h∗Q ⊂ h∗ be the Q-span of the weight lattice Λ,

and let Sym(h∗Q) be its symmetric algebra, i.e., the ring of polynomials on hQ. The
classical Borel theorem says that the cohomology ring H∗(G/B) is isomorphic to
the following quotient of the symmetric algebra:

H∗(G/B) ≃ Sym(h∗Q)/J ,

where J :=
〈
f ∈ Sym(h∗Q)W | f(0) = 0

〉
is the ideal generated by W -invariant

polynomials without constant term. The isomorphism identifies the Chern class
[λ] ∈ H2(G/B) of the line bundle Lλ with the coset of λ modulo J . The product
of [λ] and a Schubert class [Xu] in the cohomology ring is given by the following
classical formula due to Chevalley [Chev]:

(3.15) [λ] · [Xu] =
∑

α∈Φ+, ℓ(usα)=ℓ(u)−1

(λ, α∨) [Xusα
].

The Chern character is the ring isomorphism ChCh : K(G/B) ⊗ Q → H∗(G/B)
that sends the class eλ = [Lλ] ∈ K(G/B) of the line bundle Lλ to exp [λ] :=
1 + [λ] + [λ]2/2! + · · · ∈ H∗(G/B). Then

ChCh([Ow]) = [Xw] + higher degree terms.

This shows that the Chevalley formula (3.15) for the product [λ]·[Xu] inH∗(G/B)
is obtained from the expression [Lλ] · [Ou] − [Ou] in KT (G/B) by expanding it us-
ing (3.8), ignoring the exponents xµ, applying the Chern character map, and then
extracting terms of degree deg([Xu])+2. In other words, for λ ∈ Λ, u ∈ W , α ∈ Φ+

such that ℓ(usα) = ℓ(u) − 1, the coefficient in the Chevalley formula equals

(3.16) (λ, α∨) =
∑

µ∈Λ

cλ,µ
u,usα

.

A rule for computing the coefficients cλ,µ
u,w can be thought of as a generalization of

the Chevalley formula to T -equivariant K-theory.

Remark 3.2. In fact, Pittie and Ram [PiRa] worked in a more general setup than
the Grothendieck ring KT (G/B). Their construction implies that the same KT -
Chevalley coefficients cλ,µ

u,w as in (3.8) give the product of classes of Lλ and Ou in
the K-theory of a G/B-bundle over a smooth base. Thus, the results of the present
paper apply to this more general case as well.

4. Demazure characters

Lakshmibai-Littelmann [LaLi] and Littelmann-Seshadri [LiSe] indicated that the
product [Lλ] · [Ou] in the Grothendieck ring KT (G/B) is related to representa-
tion theory. This relation is also implicit in the Pittie-Ram formula [PiRa]. Ku-
mar [Kum] pointed out that the Demazure characters can be expressed in terms of
the KT -Chevalley coefficients, as shown below.
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For a dominant weight λ ∈ Λ+, let Vλ denote the finite dimensional irreducible
representation of the Lie group G with highest weight λ. For λ ∈ Λ+ and w ∈ W ,
the Demazure module Vλ,w is the B-module that is dual to the space of global
sections of the line bundle Lλ on the Schubert variety Xw:

(4.1) Vλ,w := H0(Xw,Lλ)∗.

For the longest Weyl group element w = w◦, the space Vλ,w◦
= H0(G/B,Lλ)∗ has

the structure of a G-module. The classical Borel-Weil theorem says that Vλ,w◦
is

isomorphic to the irreducible G-module Vλ. The formal characters of these modules,
called Demazure characters, are given by ch(Vλ,w) =

∑
µ∈Λmλ,w(µ) eµ ∈ Z[Λ],

where mλ,w(µ) is the multiplicity of the weight µ in Vλ,w. They generalize the
characters of the irreducible representations ch(Vλ) = ch(Vλ,w◦

). The Demazure
character formula [Dem] says that the character ch(Vλ,w) is given by

(4.2) ch(Vλ,w) = Tw(eλ),

where Tw is the Demazure operator (3.6).

Lemma 4.1. For any λ ∈ Λ+ and u ∈ W , the Demazure character ch(Vλ,u) can
be expressed in terms of the KT -Chevalley coefficients cλ,µ

u,w in (3.8) as follows:

ch(Vλ,u) =
∑

w∈W, µ∈Λ

cλ,µ
u,w e

µ.

In particular, the character of the irreducible representation Vλ of G is equal to

ch(Vλ) =
∑

w∈W, µ∈Λ

cλ,µ
w◦,w e

µ.

Proof. Applying both sides of identity (3.14) to [Ow◦
] = 1 and using Tw(1) = 1, we

obtain

Tu(eλ) =
∑

w∈W, µ∈Λ

cλ,µ
u,w eµ,

which, together with the Demazure character formula (4.2), proves the lemma. �

Let us also give a geometric argument that proves Lemma 4.1. It is implicit
in [LaLi] and [LiSe] and was reported to us by Kumar [Kum]. Let χ : KT (G/B) →
Z[Λ] be the Euler characteristic map given by

χ : [V ] 7−→
∑

i≥0

(−1)i ch(Hi(G/B,V)∗),

for a coherent sheaf V on G/B. For a dominant weight λ, the Euler characteristic
χ([Lλ] · [Ou]) is equal to the Demazure character ch(Vλ,u). Indeed, this follows from
(4.1), the fact that

Hi(G/B,Lλ ⊗Ou) = Hi(Xu,Lλ) ,

and the vanishing of the cohomologies Hi(Xu,Lλ), for i ≥ 1. In particular, we
have χ([Ow]) = 1, for any w ∈ W . Thus χ(xµ[Ow]) = eµ. Applying the Euler
characteristic map χ to both sides of (3.8), we obtain Lemma 4.1.
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5. Affine Weyl groups

In this section, we remind a few basic facts about the affine Weyl group and
alcoves, see Humphreys [Hum, Chaper 4] for more details. Then we define λ-chains
that will be used in the rest of the paper.

Let Waff be the affine Weyl group for the Langland’s dual group G∨. The affine
Weyl group Waff is generated by the affine reflections sα,k : h∗R → h∗R, for α ∈ Φ
and k ∈ Z, that reflect the space h∗R with respect to the affine hyperplanes

(5.1) Hα,k := {λ ∈ h∗R | (λ, α∨) = k}.

Explicitly, the affine reflection sα,k is given by

sα,k : λ 7→ sα(λ) + k α = λ− ((λ, α∨) − k)α.

The hyperplanes Hα,k divide the real vector space h∗R into open regions, called
alcoves. Each alcove A is given by inequalities of the form

A := {λ ∈ h∗R | mα < (λ, α∨) < mα + 1 for all α ∈ Φ+},

where mα = mα(A), α ∈ Φ+, are some integers.
A proof of the following important property of the affine Weyl group can be

found, e.g., in [Hum, Chapter 4].

Lemma 5.1. The affine Weyl group Waff acts simply transitively on the collection
of all alcoves.

The fundamental alcove A◦ is given by

A◦ := {λ ∈ h∗R | 0 < (λ, α∨) < 1 for all α ∈ Φ+}.

Lemma 5.1 implies that, for any alcove A, there exists a unique element vA of
the affine Weyl group Waff such that vA(A◦) = A. Hence the map A 7→ vA is a
one-to-one correspondence between alcoves and elements of the affine Weyl group.

Recall that θ∨ ∈ Φ∨ is the highest coroot. Let θ ∈ Φ+ be the corresponding
root, and let α0 := −θ. The fundamental alcove A◦ is, in fact, the simplex given
by

(5.2) A◦ = {λ ∈ h∗R | 0 < (λ, α∨i ) for i = 1, . . . , r, and (λ, θ∨) < 1},

Lemma 5.1 also implies that the affine Weyl group is generated by the set of reflec-
tions s0, s1, . . . , sr with respect to the walls of the fundamental alcove A◦, where
s0 := sα0,−1 and s1, . . . , sr ∈ W are the simple reflections si = sαi,0. As before, a
decomposition v = si1 · · · sil

∈ Waff is called reduced if it has minimal length; its
length ℓ(v) = l is called the length of v.

Like the Weyl group, the affine Weyl group Waff is a Coxeter group, i.e., it is
described by the relations

(5.3) (si)
2 = 1 and (sisj)

mij = 1, for any i, j ∈ {0, . . . , r},

where mij is half of the order of the dihedral subgroup generated by si and sj .
We say that two alcoves A and B are adjacent if B is obtained by an affine

reflection of A with respect to one of its walls. In other words, two alcoves are
adjacent if they are distinct and have a common wall. For a pair of adjacent

alcoves, let us write A
β

−→ B if the common wall of A and B is of the form Hβ,k

and the root β ∈ Φ points in the direction from A to B. By the definition, all
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alcoves that are adjacent to the fundamental alcove A◦ are obtained from A◦ by

the reflections s0, · · · , sr, and A◦
−αi−→ si(A◦).

Definition 5.2. An alcove path is a sequence of alcoves (A0, A1, . . . , Al) such that
Aj−1 and Aj are adjacent, for j = 1, . . . , l. Let us say that an alcove path is reduced
if it has minimal length l among all alcove paths from A0 to Al.

Let v 7→ v̄ be the homomorphism Waff → W defined by ignoring the affine
translation. In other words, s̄α,k = sα ∈W .

The following lemma, which is essentially well-known, summarizes some proper-
ties of decompositions in affine Weyl groups, cf. [Hum].

Lemma 5.3. Let v be any element of Waff , and let A = v(A◦) be the correspond-
ing alcove. Then the decompositions v = si1 · · · sil

of v (reduced or not) as a
product of generators in Waff are in one-to-one correspondence with alcove paths

A0
−β1
−→ A1

−β2
−→ · · ·

−βl−→ Al from the fundamental alcove A0 = A◦ to Al = A. This
correspondence is explicitly given by Aj = si1 · · · sij

(A◦), for j = 0, . . . , l; and the
roots β1, . . . , βl are given by

β1 = αi1 , β2 = s̄i1(αi2 ), β3 = s̄i1 s̄i2(αi3 ), . . . , βl = s̄i1 · · · s̄il−1
(αil

).

Let rj ∈ Waff denote the affine reflection with respect to the common wall of the
alcoves Aj−1 and Aj, for j = 1, . . . , l. Then the affine reflections r1, . . . , rl are
given by

r1 = si1 , r2 = si1si2si1 , r3 = si1si2si3si2si1 , . . . , rl = si1 · · · sir
· · · si1 .

We have r̄i = sβi
and v = si1 · · · sil

= rl · · · r1. Moreover, the following claims are
equivalent:

(a) v = si1 · · · sil
is a reduced decomposition;

(b) (A0, A1, . . . , Al) is a reduced alcove path;
(c) all affine reflections r1, . . . , rl are distinct;
(d) βi 6= −βj, for any i and j.

Finally, for any α ∈ Φ+, we have mα(A) = #{j | βj = −α} − #{j | βj = α}.

Proof. Let v = si1 · · · sil
be a decomposition and Aj = si1 · · · sij

(A◦), for j =
0, . . . , l. Then A0 = A◦ and Al = v(A◦) = A. Applying si1 · · · sij−1

to the adjacent

pair A◦
−αij

−→ sij
(A◦), we deduce that the pair Aj−1

−βj

−→ Aj is adjacent as well,
where βj = s̄i1 · · · s̄ij−1

(αij
). Thus (A0, . . . , Al) is an alcove path from A◦ to A.

The reflection sij
switches the alcoves A◦ and sij

(A◦). Thus the reflection rj =
si1 · · · sij

· · · si1 is the reflection with respect to the common wall of Aj−1 and Aj .
On the other hand, let (A0, . . . , Al) be any alcove path from A◦ to A, and

let rj be the reflection with respect to the common wall of Aj−1 and Aj , for
j = 1, . . . , l. Then Aj = rj · · · r1(A◦). Applying (rj−1 · · · r1)−1 = r1 · · · rj−1 to
the adjacent pair (Aj−1, Aj), we obtain the adjacent pair (A◦, s(A◦)), where s =
r1 · · · rj−1rjrj−1 · · · r1. Thus s should be a reflection with respect to one of the walls
of A◦. Thus there are i1, . . . , il ∈ {0, . . . , r} such that r1 · · · rj−1rjrj−1 · · · r1 = sij

,
for j = 1, . . . , l. The affine Weyl group element si1 · · · sil

= rl · · · r1 maps A◦ to A,
and is equal to v.

(a) ⇔ (b). This is clear, because a decomposition and the corresponding alcove
path have the same length.
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(b) ⇔ (c). The fact that all affine reflections r1, . . . , rl are distinct for a reduced
decomposition is given in [Hum, Lemma 4.5]. On the other hand, the length l of
any alcove path should be at least the number of hyperplanes of the form Hα,k that
separate A0 and Al. If all affine reflections r1, . . . , rl are distinct, then the path
never crosses the same hyperplane twice, and, thus, its length equals the number
of hyperplanes that separate A0 and Al.

(c) ⇔ (d). If βi = −βj = α, then the alcove path crosses two parallel hyperplanes
Hα,k and Hα,l in opposite directions. It follows that the path crosses one of these
hyperplanes twice, and, thus, the affine reflections r1, . . . , rl are not distinct. On the
other hand, if r1, . . . , rl are not distinct, then the path crosses the same hyperplane
more than once. It follows that the path should cross this hyperplane in opposite
directions. Thus βi = −βj for some i and j.

The last claim follows from the fact that, each time the alcove path crosses a
hyperplane of the form Hα,k, α ∈ Φ+, in positive (respectively negative) direction,
the number mα increases (respectively decreases) by 1, and all other mβ ’s do not
change. �

The affine translations by weights preserve the set of affine hyperplanes Hα,k,
cf. (2.1) and (5.1). It follows that these affine translations map alcoves to alcoves.
Let Aλ = A◦+λ be the alcove obtained by the affine translation of the fundamental
alcove A◦ by a weight λ ∈ Λ. Let vλ = vAλ

be the corresponding element of Waff ,
i.e,. vλ is defined by vλ(A◦) = Aλ. Note that the element vλ may not be an affine
translation itself.

Definition 5.4. Let λ be a weight, and let v−λ = si1 · · · sil
be any decomposition,

reduced or not, of v−λ as a product of generators of Waff . Let us say that the
λ-chain of roots associated with this decomposition is the sequence (β1, . . . , βl) of
the roots in Φ given by

β1 = α1, β2 = s̄i1(αi2), β3 = s̄i1 s̄i2(αi3), . . . , βl = s̄i1 · · · s̄il−1
(αil

) .

Sometimes we will abbreviate “λ-chain of roots” as, simply, “λ-chain.” Let us also
say that the λ-chain of reflections associated with the above decomposition for v−λ

is the sequence (r1, . . . , rl) of the affine reflections in Waff given by

r1 = si1 , r2 = si1si2si1 , r3 = si1si2si3si2si1 , . . . , rl = si1 · · · sir
· · · si1 .

In particular, r̄i = sβi
.

According to Lemma 5.3, we can equivalently define a λ-chain as a sequence of

roots (β1, . . . , βl) such that there exists an alcove path A0
−β1
−→ · · ·

−βl−→ Al from
A0 = A◦ to Al = A−λ with edges labeled by the roots −β1, . . . ,−βl. The j-th
element of the corresponding λ-chain of reflections (r1, . . . , rl) is the affine reflection
rj with respect to the common walls of the alcoves Aj−1 and Aj , for j = 1, . . . , l.

Finally, we say that a λ-chain is reduced if it is associated with a reduced de-
composition for v−λ.

Remark 5.5. If A
β

−→ B is a pair of adjacent alcoves, then (A + λ)
β

−→ (B + λ),
for any affine translation of the alcoves by the weight λ. Thus, a translation of an
alcove path by a weight λ is an alcove path labeled by the same sequence of roots.
For a λ-chain of roots (β1, . . . , βl), let us translate the corresponding alcove path

A◦
−β1−→ · · ·

−βl−→ A−λ by the weight λ, and then reverse its direction. We obtain the

alcove path A◦
βl−→ · · ·

β1
−→ Aλ associated with the (−λ)-chain (−βl, . . . ,−β1).
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6. The KT -Chevalley formula

In this section, we formulate our main result and give its several specializations
and applications to characters.

Theorem 6.1. (KT -Chevalley formula) Fix any weight λ. Let (r1, . . . , rl) and
(β1, . . . , βl) be the λ-chain of reflections and the λ-chain of roots associated with
a decomposition v−λ = si1 · · · sil

∈ Waff , which may or may not be reduced. Let
u,w ∈ W , and µ ∈ Λ. Then the KT -Chevalley coefficient cλ,µ

u,w, i.e., the coefficient
of xµ [Ow] in the expansion of the product [Lλ] · [Ou], can be expressed as follows:

(6.1) cλ,µ
u,w =

∑

J

(−1)n(J) ,

where the summation is over all subsets J = {j1 < · · · < js} of {1, . . . , l} satisfying
the following conditions:

(a) u⋗u r̄j1 ⋗u r̄j1 r̄j2 ⋗ · · ·⋗u r̄j1 r̄j2 · · · r̄js
= w is a saturated decreasing chain

from u to w in the Bruhat order on the Weyl group W ;
(b) −µ = u rj1 · · · rjs

(−λ),

and n(J) is the number of negative roots in {βj1 , . . . , βjs
}.

In Section 13, we reformulate this theorem in a compact form and then prove
it, using a certain R-matrix. In Sections 15 and 16, we give several examples that
illustrate this theorem.

Lemma 5.3 implies the following statement.

Lemma 6.2. Let (β1, . . . , βl) be a reduced λ-chain of roots. Let α ∈ Φ be a root
such that (λ, α∨) ≥ 0. Then #{i | βi = α} = (λ, α∨) and #{i | βi = −α} = 0.

In particular, if λ is a dominant weight, then all roots β1, . . . , βl are positive.
Also, if λ is an anti-dominant weight, that is, −λ ∈ Λ+, then all roots β1, . . . , βl

are negative.

In the special cases corresponding to dominant and anti-dominant weights λ,
Theorem 6.1 can be reformulated in a more explicit way. In these cases, for reduced
λ-chains, Theorem 6.1 gives a manifestly positive formula, which is not the case in
general.

Corollary 6.3. Consider the setup in Theorem 6.1. Assume that v−λ = si1 · · · sil

is a reduced decomposition in Waff .
If λ is a dominant weight, then cλ,µ

u,w equals the number of subsets J ⊆ {1, . . . , l}
that satisfy conditions (a) and (b) in Theorem 6.1.

If λ is an anti-dominant weight, then (−1)ℓ(u)−ℓ(w) cλ,µ
u,w equals the number of

subsets J ⊆ {1, . . . , l} that satisfy conditions (a) and (b) in Theorem 6.1.

Proof. For a dominant weight λ, all roots β1, . . . , βl are positive; thus n(J) = 0.
For an anti-dominant weight λ, all roots β1, . . . , βl are negative; thus n(J) = |J | =
ℓ(u) − ℓ(w). �

Theorem 6.1 specializes to following rule for products in the (nonequivariant)
Grothendieck ring K(G/B).

Corollary 6.4. The coefficient cλu,w of [Ow] in the product [Lλ] · [Ou] of classes
in K(G/B) has the same combinatorial description as in Theorem 6.1, except that
condition (b) on the weights involved is dropped.
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Proof. We have cλu,w =
∑

µ∈Λ c
λ,µ
u,w. �

Theorem 6.1 implies the following combinatorial model for the Demazure char-
acters ch(Vλ,u) and, in particular, for the characters ch(Vλ) of the irreducible rep-
resentations Vλ of the Lie group G.

Corollary 6.5. Let λ be a dominant weight, let u ∈ W , and let (r1, . . . , rl) be a
reduced λ-chain of reflections. Then the Demazure character ch(Vλ,u) is equal to
the sum

ch(Vλ,u) =
∑

J

e−u rj1
···rjs (−λ)

over all subsets J = {j1 < · · · < js} ⊂ {1, . . . , l} such that

u⋗ u r̄j1 ⋗ u r̄j1 r̄j2 ⋗ · · · ⋗ u r̄j1 r̄j2 · · · r̄js

is a saturated decreasing chain in the Bruhat order on the Weyl group W .

Proof. Apply Corollary 6.3 and Lemma 4.1. �

We can slightly simplify the formula for the characters ch(Vλ) = ch(Vλ,w◦
) of

the irreducible representations of G, as follows.

Corollary 6.6. Consider the setup in Corollary 6.5. We have

ch(Vλ) =
∑

J

e−rj1
···rjs (−λ) ,

where the summation is over all subsets J = {j1 < · · · < js} ⊂ {1, . . . , l} such that

1 ⋖ r̄j1 ⋖ r̄j1 r̄j2 ⋖ · · · ⋖ r̄j1 r̄j2 · · · r̄js

is a saturated increasing chain in the Bruhat order on the Weyl group W .

Proof. Multiplying elements in a decreasing chain by w◦ on the left results in an
increasing chain in Bruhat order. On the other hand, we can remove w◦ from the
exponent because the character ch(Vλ) is W -invariant. �

In the rest of this section, we show how to construct λ-chains of reflections
(r1, . . . , rl) and λ-chains of roots (β1, . . . , βl). Clearly, there are many possible
choices.

Let us fix an arbitrary weight λ. Let π : [0, 1] → h∗R be a sufficiently generic
continuous path such that π(0) ∈ A◦ and π(1) ∈ A−λ. Here “sufficiently generic”
means that the path π does not cross any face of an alcove of codimension 2 or
higher. For example, the path π : t 7→ −t λ + γ, where γ is a generic point in
A◦, will suffice. Suppose that the path π passes through the sequence of alcoves
A◦, . . . , A−λ as t varies from 0 to 1. This sequence is an alcove path. Let H1, . . . , Hl

be the affine hyperplanes of the form Hα,k that the path π crosses as t varies from
0 to 1. According to Lemma 5.3, the sequence (r1, . . . , rl) of affine reflections with
respect to H1, . . . , Hl is a λ-chain of reflections.

In order to make our formula completely combinatorial, we present one particular
choice for a λ-chain of reflections and the corresponding λ-chain of roots. The
construction depends on the choice of a total order α1 < · · · < αr on the simple
roots in Φ. Suppose that π = πε : [0, 1] → h∗R is the path given by

πε : t 7→ −t λ+ ε ω1 + ε2ω2 + · · · + εrωr,
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where ε is a sufficiently small positive real number. Let R = Rλ ⊂ Waff be the
set of affine reflections with respect to affine hyperplanes Hα,k that separate the
alcoves A◦ and A−λ. This set is given by

R = Rλ =
⋃

α∈Φ+






{sα,k | 0 ≥ k > −(λ, α∨)} if (λ, α∨) > 0 ,

{sα,k | 0 < k ≤ (λ, α∨)} if (λ, α∨) < 0 ,

∅ if (λ, α∨) = 0 .

For any sα,k ∈ R, α ∈ Φ+, the path πε crosses the affine hyperplane Hα,k at
the point t = tα,k = (λ, α∨)−1(−k +

∑r
i=1(ωi, α

∨) εi). Note that (λ, α∨) 6= 0, for
sα,k ∈ R. Let h : R → Rr+1 be the map given by

(6.2) h : sα,k 7→ (λ, α∨)−1 (−k, (ω1, α
∨), . . . , (ωr, α

∨)),

for any sα,k ∈ R with α ∈ Φ+. Then, for sufficiently small ε > 0, we have
tα,k < tα′,k′ if and only if h(sα,k) is less than h(sα′,k′) in the lexicographic order
on Rr+1. We claim that the map h is injective. Indeed, if h(sα,k) = h(sα′,k′), then
α = α′. Otherwise, the root system Φ∨ would contain two proportional positive
coroots α∨ 6= (α′)∨, which is not possible. Also, the fact that α = α′ implies that
k = k′.

Let b : {affine reflections} → Φ be the map given by

b : sα,k 7−→

{
α if k ≤ 0 and α ∈ Φ+,

−α if k > 0 and α ∈ Φ+.

We obtain the following result by using Lemma 5.3.

Proposition 6.7. Let R = {r1 < r2 < · · · < rl} be the total order on the set R
such that h(r1) < h(r2) < · · · < h(rl) in the lexicographic order on Rr+1. Then
(r1, . . . , rl) is the λ-chain of reflections and (β1, . . . , βl) = (b(r1), . . . , b(rl)) is the
λ-chain of roots associated with a certain reduced decomposition of v−λ.

Example 16.1 illustrates this proposition.

7. Generalization to G/P

Let P be a parabolic subgroup in G such that P ⊃ B. In this section, we show
that the KT -Chevalley formula can be easily extended to equivariant K-theory of
the generalized partial flag variety G/P .

Let ∆P be the subset of the simple roots associated with the parabolic subgroup
P . Let ΦP ⊂ Φ be the set of roots that can be written as sums of roots in ∆P , and
let Φ+

P = ΦP ∩Φ+. Then ΦP is a root system itself, with the Weyl group WP ⊂W
generated by the simple reflections si, for αi ∈ ∆P . Each coset w̄ = wWP in
W/WP has a unique representative of maximal length. Let us denote the set of
maximal coset representatives by WP ⊂ W , and let us identify it with W/WP .
The Bruhat order on W induces the Bruhat order on WP ≃W/WP . According to
Deodhar [Deo1], the covering relations in WP are of the form u⋗w, where w = usβ,

for some β ∈ Φ+ \ Φ+
P , and ℓ(u) = ℓ(w) + 1. In particular, every covering relation

in WP is a covering relation in the Bruhat order on W .
The generalized partial flag variety G/P decomposes into Schubert cells X◦w̄ =

Bw̄P/P indexed by w̄ ∈ W/WP . Their closures Xw̄ := X◦w̄ are called Schubert
varieties. Let OP

w̄ = OXw̄
, w̄ ∈ W/WP , be the structure sheaf of the Schubert

variety Xw̄. If λ is a weight satisfying (λ, β) = 0, for all β in ∆P (or, equivalently,
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WP ⊆Wλ, where Wλ is the stabilizer of λ), then λ determines a character of P , and
so a line bundle LP

λ := G×P Cλ on G/P . Let [OP
w̄ ] and [LP

λ ] be the corresponding
classes in KT (G/P ). Then the classes [OP

w̄ ] form a Z[X ]-basis of KT (G/P ), and
the classes [LP

λ ] span KT (G/P ) over Z[X ].
The equivariant K-theory of G/P can be recovered from KT (G/B), as stated in

[KoKu]. We have the canonical projection πP : G/B → G/P . This determines an
injective Z[X ]-linear homomorphism π∗P : KT (G/P ) → KT (G/B). Moreover, the
image of this map, with which KT (G/P ) can be identified, consists precisely of the
WP -invariants in KT (G/B). It is straightforward to show that

(7.1) π∗P ([OP
w̄ ]) = [Ow] , and π∗P ([LP

λ ]) = [Lλ] ,

where w ∈WP is the maximal coset representative of w̄ ∈ W/WP , and the weight
λ is such that WP ⊆Wλ.

Let us define the integer coefficients cλ,µ
ū,w̄, for ū, w̄ ∈ W/WP and λ, µ ∈ Λ, with

WP ⊆Wλ, by the following expansion of the product in KT (G/P ):

(7.2) [LP
λ ] · [OP

ū ] =
∑

w̄∈W/WP , µ∈Λ

cλ,µ
ū,w̄ xµ [OP

w̄ ] .

Our combinatorial Chevalley-type formula for KT (G/B) can be generalized to
KT (G/P ), as follows.

Corollary 7.1. Let u,w ∈ WP be the maximal coset representatives of ū, w̄ ∈
W/WP , and let λ, µ ∈ Λ such that WP ⊆ Wλ. Then we have cλ,µ

ū,w̄ = cλ,µ
u,w, where

cλ,µ
u,w is the KT -Chevalley coefficient for KT (G/B), which have the combinatorial

description given in Theorem 6.1. Moreover, if we work with reduced λ-chains,
then all the elements of the corresponding saturated chains in the Bruhat order lie
in WP .

Proof. The first part of the proof is immediate by applying the map π∗P to both
sides of (7.2), and by using (7.1). The second statement follows from the fact that,
given the choice of λ, we have (λ, β∨) = 0, for all β in ΦP . Indeed, by Lemma 5.3, a
reduced λ-chain of roots does not contain any roots in ΦP . Therefore, the conclusion
follows from the above description of the Bruhat order on WP . �

8. Applications: KT -Pieri formula and duality formulas

In this section, we present several applications of our KT -Chevalley formula.
First, we give a rule for products [Ow◦si

] · [Ou], which we call the KT -Pieri formula.
We also give the dual KT -Chevalley formula for products [Lλ]·[Iu]. Then we derive
two duality formulas for the KT -Chevalley coefficients. The first one has been
already stated forK(G/B), in a slightly imprecise way, by Brion in [Brion, Theorem
4], and proved using some fairly involved geometric arguments. We present a concise
combinatorial proof, based on our KT -Chevalley formula. The two dualities came
from the two involutions w 7→ ww◦ and w 7→ w◦w onW . OurKT -Chevalley formula
is symmetric with respect to these involutions, because they map increasing chains
in the Bruhat order to decreasing chains.

Let us call the classes [Ow◦si
] ∈ KT (G/B) of structure sheaves of codimension

one Schubert varieties Xw◦si
the special classes.
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Lemma 8.1. (a) [Brion] For a simple reflection si, we have

[Ow◦si
] = 1 − xw◦(ωi)[L−ωi

]

in the Grothendieck ring KT (G/B).
(b) The special classes [Ow◦si

], i = 1, . . . , r, generate the Grothendieck ring
KT (G/B) as an algebra over Z[X ].

Brion proved that [Ow◦si
] = 1 − [L−ωi

] in K(G/B) using a simple geometric
argument based on the exact sheaf sequence 0 → L−ωi

→ OG/B → Ow◦si
→ 0.

Brion also mentioned that this argument extends to T -equivariant K-theory.

Proof. (a) Let us apply Theorem 6.1, for u = w◦ and λ = −ωi. Every satu-
rated chain in the Bruhat order decreasing from w◦ should start with a simple
reflection. For a reduced (−ωi)-chain of reflections (r1, . . . , rl), exactly one of
the reflections r̄1, . . . , r̄l is simple. Namely, r̄l = si and, moreover, rl = sαi,1.
Thus the expansion of the product [L−ωi

] · [Ow◦
] consists of the two terms corre-

sponding to the subsets J = ∅ and J = {l}. This expansion is [L−ωi
] · [Ow◦

] =
x−w◦(ωi)[Ow◦

] − x−w◦(ωi)[Ow◦si
]. Since [Ow◦

] = 1, we obtain the required identity.
(b) Let us identify KT (G/B) with the quotient in (3.1). There is a finite set D

of exponents eµ that spans KT (G/B) as a Z[X ]-module. Indeed, we can take all
exponents in some representatives for the classes [Ow] in Z[X ]⊗Z[Λ]. For a weight
λ ∈ Λ, the exponent eλ is an invertible element in KT (G/B); and, thus, the set
eλD = {eλ+µ | eµ ∈ D} also spansKT (G/B). For a sufficiently large anti-dominant
weight λ, all exponents in the set eλD correspond to anti-dominant weights. On
the other hand, according to (a), we have e−ωi = x−w◦(ωi)(1 − [Ow◦si

]); thus, all
classes eµ = [Lµ], for anti-dominant weights µ, can be expressed in terms of the
special classes [Ow◦si

]. This implies the statement. �

The second part of Corollary 6.3, for λ = −ωi, and Lemma 8.1(a) imply the fol-
lowing combinatorial rule for products of the special classes with the basis elements
in KT (G/B).

Corollary 8.2. (KT -Pieri formula) Fix a simple reflection si, and let (r1, . . . , rl)
be a reduced (−ωi)-chain of reflections. Then, for any u ∈W , we have

[Ow◦si
] · [Ou] = (1 − xw◦(ωi)−u(ωi)) [Ou] +

∑

J

(−1)|J|−1 xν(J) [Ow(J)],

where the sum is over nonempty subsets J = {j1, . . . , js} in {1, . . . , l} such that
u⋗ u r̄j1 ⋗ u r̄j1 r̄j2 ⋗ · · ·⋗ u r̄j1 r̄j2 · · · r̄js

= w is a saturated decreasing chain in the
Bruhat order from u to w = w(J), and ν(J) = w◦(ωi) − u rj1 · · · rjs

(ωi).

Since the special classes [Ow◦si
] generate the Grothendieck ringKT (G/B), Corol-

lary 8.2 completely characterizes the multiplicative structure of this ring.

Remark 8.3. In the equivariant case, the expansion of [Ow◦si
] · [Ou] contains the

term [Ou] with a nonzero coefficient. This term vanishes in the nonequivariant
case of K(G/B). A similar phenomenon happens in the Pieri-type formula for
equivariant cohomology, which can be derived from Corollary 8.2.

Recall that the classes [Iw], w ∈ W , given by (3.12) form the dual basis to
{[Ow] | w ∈ W} with respect to the natural pairing in K-theory. Define the dual
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KT -Chevalley coefficients dλ,µ
u,w, for u,w ∈W , λ, µ ∈ Λ, by the expansion

[Lλ] · [Iu] =
∑

w∈W, µ∈L

dλ,µ
u,w x

µ [Iw].

Corollary 8.4. (dual KT -Chevalley formula) The dual KT -Chevalley coefficients
are related to the KT -Chevalley coefficients as dλ,µ

u,w = c−λ,−µ
u,w . Thus Theorem 6.1

provides a combinatorial description for the coefficients dλ,µ
u,w.

Proof. Follows from (3.13). �

Remark 8.5. In a recent paper4, Griffeth and Ram [GrRa] provided more details
of the proof of the Pittie-Ram formula and gave a dual KT -Chevalley formula, for
dominant weights λ, using LS-paths. They also derived Lemma 8.1(a) above and
Theorem 8.6 below, for dominant λ. Note that our dual KT -Chevalley formula is
just the usual KT -Chevalley formula (Theorem 6.1) with λ and µ replaced by −λ
and −µ. Since the Pittie-Ram formula does not work for nondominant weights,
Griffeth and Ram had to derive its dual version separately. The symmetry between
the Pittie-Ram formula and its dual version given in [GrRa] is not so transparent as
the symmetry in our construction. Actually, Griffeth and Ram gave four different
formulas for the products [Lλ]·[Ow], [L−λ]·[Ow], [Lw◦(λ)]·[Ow], and [Ow◦si

]·[Ow], for
a dominant weight λ, using LS-paths. From our point of view, these four products
are given by various specializations of the KT -Chevalley formula, for arbitrary λ.

Let us now discuss symmetries of the KT -Chevalley coefficients. In order to
make our notation compatible with that in [Brion], we define the coefficients cwu (λ)
in Z[X ] by

[Lλ] · [Ou] =
∑

w∈W

cwu (λ) [Ow ] .

In other words, the cwu (λ) are expressed in terms of the KT -Chevalley coefficients,
as follows: cwu (λ) =

∑
µ∈Λ c

λ,µ
u,w x

µ, see (3.8).

Theorem 8.6. [Brion, Theorem 4] We have the following duality formula:

cwu (λ) = (−1)ℓ(u)−ℓ(w)cuw◦

ww◦
(w◦λ) .

Proof. Let (β1, . . . , βl) and (r1, . . . , rl) be the λ-chain of roots and the λ-chain of
reflections associated with some alcove path. Let us translate this alcove path by
λ, reverse its direction (cf. Remark 5.5), and then apply the map A 7→ −w◦(A) to
the corresponding alcoves. Note that −w◦(A◦) = A◦. The resulting alcove path
corresponds to the (w◦λ)-chain of roots (w◦βl, . . . , w◦β1) and a certain w◦(λ)-chain
of reflections (r′l, . . . , r

′
1). We can express the affine reflections r′j , as follows. Let

γ and tλ be the operators on h∗R given by γ : µ 7→ −µ and tλ : µ 7→ µ + λ. Then
r′j = w◦γ tλrjt−λγ w◦. Thus r̄′j = w◦r̄jw◦.

Clearly, to each sequence J = (j1, j2, . . . , js) with

u⋗ ur̄j1 ⋗ ur̄j1 r̄j2 ⋗ · · · ⋗ ur̄j1 r̄j2 · · · r̄js
= w ,

corresponds the sequence J ′ = (js, js−1, . . . , j1) with

ww◦ ⋗ ww◦r̄
′
js

⋗ ww◦ r̄
′
js
r̄′js−1

⋗ · · · ⋗ ww◦r̄
′
js
r̄′js−1

· · · r̄′j1 = uw◦ .

4[GrRa] appeared in arXiv after the present paper was finished.
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This correspondence is a bijection. Since w◦ maps positive roots to negative roots,
we have n(J ′) = s−n(J) = ℓ(u)−ℓ(w)−n(J), so (−1)n(J) = (−1)ℓ(u)−ℓ(w)(−1)n(J′).
This takes care of the sign in the duality formula.

It remains to check that the sequences J and J ′ produce the same weight, see
condition (b) in Theorem 6.1. It suffices to show that

rj1rj2 . . . rjs
(−λ) = r̄j1 r̄j2 . . . r̄js

w◦r
′
js
r′js−1

. . . r′j1w◦(−λ) .

Let us denote v = rj1 · · · rjs
∈ Waff . Then the left-hand side of this expression is

v(−λ). We can write the right-hand side of this expression as

r̄j1 · · · r̄js
γ tλrjs

· · · rj1 t−λγ (−λ) = −v̄ tλv
−1(0).

We claim that

(8.1) v(−λ) = −v̄ tλ v
−1(0),

for any v ∈ Waff and λ ∈ Λ. Indeed, if v(−λ) = v̄(−λ) + µ, then v−1(0) =
v̄−1(0 − µ) = −v̄−1(µ). Thus v̄ tλv

−1(0) = v̄(λ) − µ, as needed. �

Let us also present a new duality formula. We denote by ι the involutory auto-
morphism of Z[X ] given by ι : xµ 7→ x−w◦µ.

Theorem 8.7. We have the following duality formula:

cwu (λ) = (−1)ℓ(u)−ℓ(w)ι(cw◦u
w◦w(−λ)) .

Proof. Let (β1, . . . , βl) and (r1, . . . , rl) be the λ-chain of roots and the λ-chain of
reflections associated with some alcove path. Let us translate the alcove path and
reverse its direction, as discussed in Remark 5.5. We obtain the (−λ)-chain of roots
(−βl, . . . ,−β1) and the corresponding (−λ)-chain of roots (r′l, . . . , r

′
1). Let tλ be

the operator of translation by λ, as before. Then r′j = tλrjt−λ. Thus r̄′j = r̄j . In an
almost identical way to the proof of Theorem 8.6, we can now construct a bijection
between the appropriate decreasing saturated chains from u to w, and those from
w◦w to w◦u. The discussion about the signs is also similar. It remains to verify
the weight condition:

rj1rj2 · · · rjs
(−λ) = −r̄j1 r̄j2 · · · r̄js

r′js
r′js−1

· · · r′j1 (λ) .

This identity can be written as v(−λ) = −v̄ tλv−1t−λ(λ), for v = rj1 · · · rjs
, which

is equivalent to (8.1). �

The two duality formulas above imply the following formula.

Corollary 8.8. We have

cwu (λ) = ι(cw◦ww◦

w◦uw◦
(−w◦λ)) .

Note each of the two duality formulas in Theorems 8.6 and 8.7 can be obtained
from the other one combined with Corollary 8.8.

Kumar provided us with the following geometric explanation of Corollary 8.8.
This duality in equivariantK-theory is induced by the standard involution on G/B,
which interchanges the Schubert varieties Xw and Xw◦ww◦

. Let us denote by θ the
canonical isomorphism (3.1) from (Z[X ] ⊗ Z[Λ])/I to KT (G/B).

Proposition 8.9. There is an involutive automorphism ω on KT (G/B) such that



AFFINE WEYL GROUPS IN K-THEORY AND REPRESENTATION THEORY 23

(a) the involution ω maps each class [Ow] to [Ow◦ww◦
];

(b) under the isomorphism θ, the involution ω maps xµ ⊗eλ to x−w◦µ ⊗e−w◦λ,
for λ, µ ∈ Λ.

Algebraic proof. The involutive automorphism of Z[X ] ⊗ Z[Λ] given by xµ ⊗ eλ 7→
x−w◦(µ) ⊗ e−w◦(λ) preserves the ideal I and, thus, induces an involutive automor-
phism ω on KT (G/B) ≃ (Z[X ] ⊗ Z[Λ])/I. Applying this involution to the defi-
nition of the elementary Demazure operators Ti in (3.2), we deduce that ω Ti ω =
Tj, where j is given by αj = −w◦(αi), or equivalently, sj = w◦siw◦. Thus
ω Tw ω = Tw◦ww◦

, for any w ∈ W . Kostant-Kumar’s formula (3.7) implies that
ω : [Ow] 7→ [Ow◦ww◦

]. �

Geometric proof (due to Kumar [Kum]). Let c : G→ G be the Chevalley isomor-
phism. This is an algebraic group isomorphism mapping t 7→ t−1 for t in T , and
B 7→ B−, where B− is the opposite Borel subgroup. Also let cw◦

: G → G be
the automorphism given by g 7→ w◦gw

−1
◦ , where w◦ in N(T ) is a representative of

w◦. Let φ : G → G be the composite c ◦ cw◦
. Then φ(B) = B. Thus φ induces a

variety isomorphism φ : G/B → G/B. Moreover, since c induces the identity map
on the Weyl group, we see that φ(Xw) = Xw◦ww◦

. Thus φ induces the involution
ω on KT (G/B) such that ω : [Ow] 7→ [Ow◦ww◦

].
To show that, under the isomorphism θ, we have ω : eλ 7→ e−w◦λ, we identify

G/B with K/T , where K is a maximal compact subgroup of G. Let us consider
the following bundle morphism.

K ×T C−w◦λ K ×T Cλ

K/T K/T

-
φ̂

? ?

-

φ

Here we let φ̂(k, v◦) := (φ(k), v◦), where v◦ is a generator of C−w◦λ, and v◦ is a

generator of Cλ. It is easy to see that φ̂ is well defined. Thus, we have ω◦θ(1⊗eλ) =
θ(1 ⊗ e−w◦λ) . The proof of ω : xµ 7→ x−w◦µ is similar. �

Note that the map φ in the above proof is not T -equivariant, whence the invo-
lution ω is not a Z[X ]-linear map.

Let cwu,v ∈ Z[X ] be the structure constants of KT (G/B) with respect to the basis
of classes of structure sheaves of Schubert varieties:

[Ou] · [Ov] =
∑

w

cwu,v [Ow] .

The coefficients cwu (±ωi) are related to certain structure constants cwu,v, as follows.

Corollary 8.10. cf. [Brion] For v 6= w, we have

(a) cwu (−ωi) = −x−w◦(ωi) cww◦si,u ;

(b) cwu (ωi) = (−1)ℓ(u)−ℓ(w)−1xωi cuw◦

siw◦,ww◦
;

(c) cwu (ωi) = (−1)ℓ(u)−ℓ(w)−1xωi ι(cw◦u
w◦si,w◦w) .

Also, we have cuw◦si,u = 1 − xw◦(ωi)−u(ωi).

The first two formulas (a) and (b) were given by Brion [Brion] for K(G/B) in a
slightly imprecise form.
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Proof. Identity (a) is obtained from the formula in Lemma 8.1(a) by multiplying
both sides by [Ou]. Identity (b) is obtained from (a) and the duality formula in
Theorem 8.6, as follows:

cwu (ωi) = (−1)ℓ(u)−ℓ(w)cuw◦

ww◦
(w◦(ωi)) = (−1)ℓ(u)−ℓ(w)cuw◦

ww◦
(−ωj)

= (−1)ℓ(u)−ℓ(w)−1x−w◦(ωj) cuw◦

w◦sj ,ww◦
= (−1)ℓ(u)−ℓ(w)−1xωi cuw◦

siw◦,ww◦
.

Here we used the fact that −w◦αi is the simple root αj such that sj = w◦siw◦.
Similarly, we obtain identity (c) using the duality formula in Theorem 8.7. �

Remark 8.11. We can easily expand the product [Ow◦si
] · [Ou] using our KT -

Chevalley formula, as shown in Corollary 8.2. However, it is hard to apply the
Pittie-Ram formula directly to the calculation of this expansion, because the latter
formula works for dominant weights only. In order to use this formula, one needs to
invert the operator of multiplication by [Lωi

] acting on the |W |-dimensional space
KT (G/B). Alternatively, one can use Brion’s geometric argument to derive the
second formula in Corollary 8.10. But then, one needs to apply the Pittie-Ram
formula for computing all products [Lωj

] · [Oww◦
], for w ∈ W , and extract the

coefficient of [Ouw◦
] in each result, where j is given by sj = w◦siw◦. Indeed, we

have no way of knowing in advance to which Weyl group element an LS-path leads,
via Deodhar’s lift operator. In other words, it is hard to “invert” the Pittie-Ram
construction based on LS-paths and Deodhar’s lifts.

9. The Yang-Baxter equation

Our construction is based on a certain R-matrix, that is, a collection of operators
satisfying the Yang-Baxter equation. In this section, we discuss the Yang-Baxter
equation, following the approach of Cherednik [Cher].

For a pair of roots α, β ∈ Φ such that (α, β) ≤ 0, the subset of roots ∆ ⊂ Φ
obtained from α and β by a sequence of reflections sα and sβ is a rank 2 root
system of type A1 × A1, A2, B2, or G2. The reflections sα and sβ generate a
dihedral subgroup in W of order 2m, where m = 2, 3, 4, 6, for types A1 × A1, A2,
B2, G2, respectively. The condition (α, β) ≤ 0 implies that α, β form a system of
simple roots for ∆. Them roots in ∆ expressible as nonnegative linear combinations
of α and β can be normally ordered as follows: α, sα(β), sαsβ(α), . . . , sβ(α), β.

The following definition was given by Cherednik [Cher, Definition 2.1a] in a
slightly different form.

Definition 9.1. We say that a collection of invertible operators {Rα | α ∈ Φ}
labeled by roots satisfies the Yang-Baxter equation if R−α = (Rα)−1 and, for any
pair of roots α, β ∈ Φ such that (α, β) ≤ 0, we have

(9.1) RαRsα(β)Rsαsβ(α) · · ·Rsβ(α)Rβ = RβRsβ(α) · · ·Rsαsβ(α)Rsα(β)Rα.

A collection of operators {Rα | α ∈ Φ} satisfying the Yang-Baxter equation is also
called an R-matrix.

For example, the operators Rα and Rβ commute whenever (α, β) = 0. If ∆ is of
type A2, then the Yang-Baxter equation (9.1) says that

RαRα+βRβ = RβRα+βRα.

The following two lemmas are implicit in [Cher].
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Lemma 9.2. Consider a collection {Rα | α ∈ Φ+} of invertible operators labeled by
positive roots which satisfies the Yang-Baxter equation (9.1), for any pair of positive
roots α, β ∈ Φ+ such that (α, β) ≤ 0. Let us extend this collection to all roots α ∈ Φ
by R−α := (Rα)−1. Then the collection {Rα | α ∈ Φ} is an R-matrix.

Proof. Let us multiply the Yang-Baxter equation (9.1) by R−β on the left and on
the right. We get

R−βRαRsα(β)Rsαsβ(α) · · ·Rsβ(α) = Rsβ(α) · · ·Rsαsβ(α)Rsα(β)RαR−β.

This is the same equation with (α, β) replaced by the pair (sβ(β), sβ(α)). Applying
this procedure repeatedly, we can always transform the pair (α, β) into a pair of
positive roots. �

For a decomposition v = si1 · · · sil
∈ Waff , reduced or not, of an affine Weyl

group element v, let (β1, . . . , βl) be the corresponding λ-chain of roots. For an

R-matrix {Rα | α ∈ Φ}, let us define R(si1
···sil

) = Rβl
Rβl−1

· · ·Rβ2
Rβ1

.

Lemma 9.3. Let {Rα | α ∈ Φ} be an R-matrix. Then the operator R(si1
···sil

)

depends only on the affine Weyl group element v = si1 · · · sil
, not on the choice of

the decomposition.

Proof. The Coxeter relations (5.3) imply that any two decompositions of v can
be related by a sequence of local moves of the following two types: (1) adding or
removing segments sisi; (2) the Coxeter moves

(9.2) si1 · · · sia

mij terms

(sisjsi · · · ) sib
· · · sil

−→ si1 · · · sia

mij terms

(sjsisj · · · ) sib
· · · sil

.

Adding or removing a segment sisi in a decomposition for v results in adding
or removing a segment β,−β in the sequence of roots (β1, . . . , βl). This does not
change the operator Rβl

· · ·Rβ1
, because RβR−β = 1. A Coxeter move (9.2) results

in applying the Yang-Baxter transformation

α, sα(β), . . . , sβ(α), β −→ β, sβ(α), . . . , sα(β), α

to the segment (βa+1, . . . , βb−1) = (α, sα(β), · · · , β) in the sequence (β1, . . . , βl).
Here we have α = s̄i1 · · · s̄ia

(αi) and β = s̄i1 · · · s̄ia
(αj). Note that (α, β) =

(αi, αj) ≤ 0. The Yang-Baxter equation (9.1) guarantees that this transforma-
tion of the sequence (β1, . . . , βl) does not change the operator Rβl

· · ·Rβ1
. �

10. Bruhat operators

In this section, we present a class of solutions of the Yang-Baxter equation.

It will be convenient to extend the ring of coefficients Z[X ] = R(T ) in KT (G/B)
as follows. Let us shrink the weight lattice h∨ times by defining Λ/h∨ := {λ/h∨ |
λ ∈ Λ}, where h∨ := (ρ, θ∨)+1 is the dual Coxeter number. Let Z[X̃ ] be the group

algebra of Λ/h∨, which has formal exponents xλ/h∨

, for λ ∈ Λ. This is the algebra

of Laurent polynomials Z[X̃] = Z[x±ω1/h∨

, . . . , x±ωr/h∨

]. Let

K̃T (G/B) := KT (G/B) ⊗Z[X] Z[X̃].

The space K̃T (G/B) has the Z[X̃ ]-linear basis given by the classes [Ow], for w ∈W .
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For a positive root α ∈ Φ+, let us define the Bruhat operator Bα acting Z[X̃ ]-

linearly on K̃T (G/B) by

(10.1) Bα : [Ow] 7−→

{
[Owsα

] if ℓ(wsα) = ℓ(w) − 1,

0 otherwise.

Also define Bα := −B−α, if α is a negative root. The operators Bα move Weyl
group elements one step down in Bruhat order.

For a weight λ, define the Z[X̃ ]-linear operators Xλ acting on K̃T (G/B) by

(10.2) Xλ : [Ow] 7→ xw(λ/h∨)[Ow].

For α ∈ Φ and λ, µ ∈ Λ, these operators satisfy the following relations:

(Bα)2 = 0 ,(10.3)

XλXµ = Xλ+µ ,(10.4)

BαX
λ = Xsα(λ)Bα .(10.5)

For a fixed weight λ and k ∈ Z, we define a family of operators {Rα | α ∈ Φ}
labeled by roots α ∈ Φ acting on K̃T (G/B) as follows:

(10.6) Rα = Xkα +X(λ,α∨) αBα = Xλ (Xkα +Bα)X−λ.

Using relations (10.3) and (10.5), we obtain

R−α = X−kα −X(λ,α∨) αBα = (Rα)−1.

Theorem 10.1. Fix a weight λ and k ∈ Z. The family of operators {Rα | α ∈ Φ}
given by (10.6) satisfies the Yang-Baxter equation (9.1).

Proof. Let us first assume that λ = 0 and k = 0. In this case Rα = 1 + Bα.
In [BFP], we proved the Yang-Baxter equation for a general class of operators by
checking it for all the rank 2 root systems (that is, for types A1 × A1, A2, B2,
and G2). In particular, the results of [BFP] imply that the family of operators
{1 +Bα | α ∈ Φ+} satisfies the Yang-Baxter equation (9.1). Also R−α = 1−Bα =
(1 +Bα)−1 = (Rα)−1. According to Lemma 9.2, the collection {1 +Bα | α ∈ Φ} is
an R-matrix.

Let us now consider the general case. For α ∈ Φ and n ∈ Z, let us define

R̂n
α := 1 +XnαBα.

Then Rα = Xkα R̂
(λ,α∨)−k
α . For µ ∈ Λ, we get, using (10.5),

(10.7) R̂n
αX

µ = Xµ R̂n−(µ,α∨)
α .

Let us write the left-hand side of the Yang-Baxter equation (9.1) as follows:

Rγ1
· · ·Rγm

= Xkγ1 R̂n1

γ1
Xkγ2 R̂n2

γ2
· · ·Xkγm R̂nl

γm
,

where (γ1, . . . , γm) = (α, sα(β), · · · , sβ(α), β) and ni = (λ, γ∨i )− k. Using (10.7) to
commute all Xkγi to the left, we obtain the expression

Rγ1
· · ·Rγm

= Xk(γ1+···+γm) R̂
n′

1
γ1 R̂

n′

2
γ2 · · · R̂

n′

l
γm ,

where

n′i = ni −
m∑

j=i+1

k(γj , γ
∨
i ) = (λ− k(γi+1 − · · · − γm), γ∨i ) − k.
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Let us show that

(γ1 + · · · + γi−1, γ
∨
i ) = (γi+1 + · · · + γm, γ

∨
i ) ,

for all i = 1, . . . ,m. Suppose that i ≤ (m + 1)/2. The reflection sγi
sends the

roots γ1, . . . , γi−1 to −γ2i−1, . . . ,−γi+1, and the roots γ2i, . . . , γm to γm, . . . , γ2i,
respectively. Thus

(γ1 + · · · + γi−1, γ
∨
i ) = (γi+1 + · · · + γ2i−1, γ

∨
i ) and (γ2i + · · · + γm, γ

∨
i ) = 0,

as needed. Since (γi, γ
∨
i ) = 2, we get

n′i = (λ− k(γi+1 − · · · − γm), γ∨i ) − k = (λ− k̺, γ∨i ),

where ̺ = 1
2 (γ1 + · · ·+ γm) is the “rho” for the rank 2 root system ∆ generated by

α and β.
This shows that

Rγ1
· · ·Rγm

= X2k̺R̂
(µ,γ∨

1 )
γ1 · · ·R

µ,γ∨

m
γl = Xµ+2k̺R̂0

γ1
· · · R̂0

γm
X−µ,

where µ = λ − k̺. Analogously, the right-hand side of the Yang-Baxter equa-
tion (9.1) can be written as

Rγm
· · ·Rγ1

= Xµ+2k̺R̂0
γm

· · · R̂0
γ1
X−µ .

The fact that the operators R̂0
α = 1 +Bα satisfy the Yang-Baxter equation implies

that the family {Rα | α ∈ Φ} satisfies the Yang-Baxter equation as well. This
concludes the proof. �

In the rest of the paper, we only use a special case of the operators Rα defined
in (10.6), namely we set λ := ρ and k := 1, which leads to

(10.8) Rα = Xα +X(ρ,α∨) αBα = Xρ (Xα +Bα)X−ρ, for α ∈ Φ.

11. Commutation relations

Let Ti be the operator on K̃T (G/B) induced by the elementary Demazure opera-

tor (3.2), for i = 1, . . . , r. In view of (3.3) and (3.7), this operator acts Z[X̃ ]-linearly

on K̃T (G/B) as

Ti : [Ow] 7−→

{
[Owsi

] if ℓ(wsi) = ℓ(w) + 1,

[Ow] if ℓ(wsi) = ℓ(w) − 1.

Let Bi := Bαi
be the Bruhat operator for a simple reflection, which is the Z[X̃ ]-

linear operator on K̃T (G/B) defined by

Bi : [Ow] 7→

{
[Owsi

] if ℓ(wsi) = ℓ(w) − 1,

0 if ℓ(wsi) = ℓ(w) + 1.

Let us define a similar Z[X̃]-linear operator B∗i by

B∗i : [Ow] 7→

{
[Owsi

] if ℓ(wsi) = ℓ(w) + 1,

0 if ℓ(wsi) = ℓ(w) − 1.

Since both operators B∗i and Bi map [Ow] to [Owsi
] or to zero, we have

(11.1) XµB∗i = B∗i X
si(µ), and XµBi = Bi X

si(µ),

for any weight µ ∈ Λ.
The operator B∗i can be expressed in terms of Ti and Bi as follows.
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Lemma 11.1. We have B∗i = Ti (1 −Bi) = (1 +Bi)(Ti − 1), for i = 1, . . . , r.

Proof. It is enough to check this claim for restrictions of the operators on the 2-
dimensional invariant subspace spanned by [Ow] and [Owsi

], for any w ∈ W such
that ℓ(wsi) = ℓ(w) + 1. The required identity is

(
0 0
1 0

)
=

(
0 0
1 1

) (
1 −1
0 1

)
=

(
1 1
0 1

) (
−1 0
1 0

)
,

which we leave to the reader as an exercise. �

Recall that Bβ are the Bruhat operators given by (10.1).

Lemma 11.2. cf. Deodhar [Deo1, Lemma 2.1] We have Bβ B
∗
i = B∗i Bsi(β), for

i = 1, . . . , r and β ∈ Φ such that β 6= ±αi.

Proof. We may assume that β ∈ Φ+. Let β′ = si(β). Then β′ ∈ Φ+ and β′ 6= αi.
Both operators Bβ B

∗
i and B∗i Bβ′ map [Ow] to [Owsisβ

] = [Owsβ′si
] or to zero.

Thus, we need to show that Bβ B
∗
i ([Ow]) is nonzero if and only if B∗i Bβ′([Ow]) is

nonzero.
Suppose that this is not true. One possibility is that we have Bβ B

∗
i ([Ow]) = 0

and B∗i Bβ′([Ow]) 6= 0. Then ℓ(w) = ℓ(wsβ′) + 1 = ℓ(wsi) + 1 = ℓ(wsβ′si). Indeed,
B∗i Bβ′([Ow]) 6= 0 implies that ℓ(wsβ′) = ℓ(w) − 1 and ℓ(wsβ′si) = ℓ(wsβ′) + 1,
while Bβ B

∗
i ([Ow]) = 0 implies that ℓ(wsi) 6= ℓ(w)+1, and, thus, ℓ(wsi) = ℓ(w)−1.

Let us choose a reduced decomposition for w = si1 · · · sil
such that il = i.

By the Strong Exchange Condition [Hum, Theorem 5.8], the fact that ℓ(w) =
ℓ(wsβ′) + 1 implies that there exists k ∈ {1, . . . , l} such that si1 · · · ŝik

· · · sil
is a

reduced decomposition for wsβ′ . Furthermore, we have β′ = sil
· · · sik+1

(αik
). Since

β′ 6= αi, we have k 6= l. We obtain a reduced decomposition for wsβ′ that ends
with si. Thus ℓ(wsβ′si) = ℓ(wsβ′) − 1, which is a contradiction.

Now suppose that we have Bβ B
∗
i ([Ow ]) 6= 0 and B∗i Bβ′([Ow]) = 0. Then

ℓ(w) = ℓ(wsi)− 1 = ℓ(wsβ′)− 1 = ℓ(wsβ′si) or, equivalently, ℓ(w′) = ℓ(w′si) + 1 =
ℓ(w′sβ) + 1 = ℓ(w′sβsi), for w′ = wsi. The above argument shows that this is
impossible. �

Remark 11.3. The contradictions derived in the above proof are essentially the
content of Lemma 2.1 in [Deo1], which is proved in a similar way.

Let {Rα | α ∈ Φ} be the R-matrix given by (10.8). The main technical result of
this section is the following statement that gives a commutation relation between
this R-matrix and the Demazure operators Ti.

Proposition 11.4. For any β ∈ Φ and i = 1, . . . , r, we have

(a) Rαi
Ti = TiR−αi

+Rαi
,

(b) R−αi
Ti = TiRαi

−Rαi
,

(c) Rβ Ti = TiR−αi
Rsi(β)Rαi

if β 6= ±αi.

Proof. We have Rαi
= Xαi (1 +Bi) and R−αi

= (1 −Bi)X
−αi .

(a) By Lemma 11.1, (1 +Bi) (Ti − 1) = Ti (1 −Bi). Thus

Xαi (1 +Bi)Ti = Xαi Ti (1 −Bi) +Xαi (1 +Bi).

Then use (11.1) to commute Xαi with Ti (1 − Bi) = B∗i in the first term in the
right-hand side. This produces (a).

(b) Multiply (a) by R−αi
on the left and by Rαi

on the right.
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(c) Let β′ = si(β). Identity (c) can be written as

(Xβ +Xkβ Bβ)Ti = Ti (1 −Bi)X
−αi (Xβ′

+Xk′β′

Bβ′)Xαi (1 +Bi),

where k = (ρ, β∨) and k′ = (ρ, (β′)∨) = (si(ρ), β
∨) = (ρ− αi, β

∨). The right-hand
side of this identity can be written as

Ti (1 −Bi) (Xβ′

+Xkβ′

Bβ′) (1 + Bi).

Indeed, Xk′β′−αi Bβ′Xαi = Xkβ′

Bβ′ , because k′β′−αi+sβ′(αi) = (ρ−αi, β
∨)β′−

(αi, (β
′)∨)β′ = (ρ, β∨)β′ = kβ′. Commuting Xβ′

and Xkβ′

Bβ′ with Ti (1 −Bi) =
B∗i using (11.1) and Lemma 11.2, we can rewrite this as

(Xβ +Xkβ Bβ)B∗i (1 +Bi) = (Xβ +Xkβ Bβ)Ti,

which is equal to the left-hand side of required identity. �

12. Path operators

Recall that v−λ ∈ Waff , λ ∈ Λ, is the unique element of the affine Weyl group
such that v−λ(A◦) = A−λ = A◦ − λ. Each decomposition v−λ = si1 · · · sil

in Waff

corresponds to an alcove path A◦
−β1
−→ · · ·

−βl−→ A−λ; and the sequence of roots
(β1, . . . , βl) is called a λ-chain, see Definition 5.4. Also recall that there is an

associated alcove path A◦
βl−→ · · ·

β1
−→ Aλ, as discussed in Remark 5.5.

For λ ∈ Λ, let us define the operator R[λ] acting on K̃T (G/B) by

(12.1) R[λ] := Rβl
Rβl−1

· · ·Rβ2
Rβ1

,

where (β1, . . . , βl) is a λ-chain, and the R-matrix {Rα | α ∈ Φ} is given by (10.8).

Remark 12.1. Theorem 10.1 and Lemma 9.3 imply that the operator R[λ] depends
only on the weight λ and does not depend on the choice of a λ-chain.

The following result is not used in subsequent proofs. We state it because it
exhibits the commutativity of the operators Eλ and Eµ in our combinatorial model,
based on Remark 12.1.

Proposition 12.2. For any λ, µ ∈ Λ, we have R[λ] ·R[µ] = R[λ+µ].

Proof. Let us choose a λ-chain (β1, . . . , βl) and a µ-chain (β′1, . . . , β
′
m). They cor-

respond to alcove paths A◦
βl−→ · · ·

β1
−→ Aλ and A◦

β′

m−→ · · ·
β′

1−→ Aµ. If we translate

all alcoves in the second path λ, we obtain the alcove path Aλ
β′

m−→ · · ·
β′

1−→ Aλ+µ.
Let us concatenate the first path from A◦ to Aλ with the translated path from Aλ

to Aλ+µ. We obtain the alcove path

A◦
βl−→ · · ·

β1
−→ Aλ

β′

m−→ · · ·
β′

1−→ Aλ+µ.

This shows that the sequence (β′1, . . . , β
′
m, β1, . . . , βl) is a (λ+ µ)-chain. Thus

R[λ] · R[µ] = Rβl
· · ·Rβ1

Rβ′

m
· · ·Rβ′

1
= R[λ+µ],

as needed. �

Lemma 12.3. Let (β1, . . . , βl) be a λ-chain. Then, for any i = 1, . . . , r, the se-
quence of roots (αi, si(β1), . . . , si(βl),−αi) is an si(λ)-chain.
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Proof. Applying the reflection si to the alcove path A◦
βl−→ · · ·

β1
−→ Aλ, we obtain

the alcove path si(A◦)
si(βl)
−→ · · ·

si(β1)
−→ si(Aλ). We have A◦

−αi−→ si(A◦). Translating

this relation by si(λ), we obtain (si(A◦)+ si(λ))
αi−→ (A◦+ si(λ)), or, equivalently,

si(Aλ)
αi−→ Asi(λ). Thus

A◦
−αi−→ si(A◦)

si(βl)
−→ · · ·

si(β1)
−→ si(Aλ)

αi−→ Asi(λ)

is an alcove path, and (αi, si(β1), . . . , si(βl),−αi) is an si(λ)-chain. �

Lemma 12.4. Let (β1, . . . , βl) be a λ-chain, and let A0
βl−→ · · ·

β1
−→ Al be the

corresponding alcove path from A0 = A◦ to Al = Aλ. Assume that ±βj = αi is a
simple root, for some i ∈ {1, . . . , r} and j ∈ {1, . . . , l}. Then

(αi, si(β1), . . . , si(βj−1), βj+1, . . . , βl)

is an s(λ)-chain, where s = sαi,k denotes the affine reflection with respect to the

common wall of the alcoves Al−j
βj

−→ Al−j+1.

Proof. Let us apply the following tail-flip to the alcove path A0
βl−→ · · ·

β1
−→ Al.

We leave the initial segment A0
βl−→ · · ·

βj+1

−→ Al−j unmodified and apply the affine

reflection s to the remaining tail: s(Al−j+1)
s̄(βj−1)
−→ s(Al−j+2)

s̄(βj−2)
−→ · · ·

s̄(β1)
−→ s(Al).

Note that Al−j = s(Al−j+1) and s̄ = si. Also note that s(Al) = s(A◦ + λ) =

si(A◦) + s(λ), and, thus, s(Al)
αi−→ Asi(λ). Let us add the step s(Al)

αi−→ Asi(λ) at
the end of the alcove path with flipped tail. We obtain the alcove path

A0
βl−→ · · ·

βj+1

−→ Al−j
si(βj−1)
−→ s(Al−j+2)

si(βj−2)
−→ · · ·

si(β1)
−→ s(Al)

αi−→ Asi(λ).

from A◦ to Asi(λ). Thus (αi, si(β1), . . . , si(βj−1), βj+1, . . . , βl) is an s(λ)-chain. �

Proposition 12.5. For any λ ∈ Λ and i ∈ {1, . . . , r}, we have

R[λ] · Ti = Ti · R
[si(λ)] +

∑

0≤k<(λ,α∨

i
)

R[λ−kαi] −
∑

(λ,α∨

i
)≤k<0

R[λ−kαi].

Proof. Let us choose a λ-chain (β1, . . . , βl). Let A0
βl−→ · · ·

β1
−→ Al be the corre-

sponding alcove path from A0 = A◦ to Al = Aλ. And let rj be the affine reflection

with respect to the common wall of the alcoves Al−j
βj

−→ Al−j+1.

Then R[λ] = Rβl
· · ·Rβ1

. Using the relations in Proposition 11.4 repeatedly to
commute Ti with Rβl

· · ·Rβ1
, we obtain

Rβl
· · ·Rβ1

Ti = TiR−αi
Rsi(βl) · · ·Rsi(β1)Rαi

+
∑

j: βj=αi

Rβl
· · ·Rβj+1

Rsi(βj−1) · · ·Rsi(β1)Rαi

−
∑

j: βj=−αi

Rβl
· · ·Rβj+1

Rsi(βj−1) · · ·Rsi(β1)Rαi
.

According to Lemmas 12.3 and 12.4, the right-hand side of this expression can be
written as

R[λ] · Ti = Ti ·R
[si(λ)] +

∑

j: βj=αi

R[rj(λ)] −
∑

j: βj=−αi

R[rj(λ)].
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For a hyperplane H of the form Hαi,k, k ∈ Z, let pk be the number of times

the alcove path A◦
βl−→ · · ·

β1
−→ Aλ crosses H in the positive direction, and nk

be the number of times the path crosses H in the negative direction. In other
words, pk = #{j | βj = αi, rj = sαi,k} and nk = #{j | βj = −αi, rj = sαi,k}.
Then pk − nk is nonzero if and only if H separates the alcoves A◦ and Aλ. More
specifically,

pk − nk =






1 if 0 < k ≤ (λ, α∨i ),

−1 if 0 ≥ k > (λ, α∨i ),

0 otherwise.

This shows that

R[λ] · Ti = Ti ·R
[si(λ)] +

∑

0<k≤(λ,α∨

i
)

R[sαi,k(λ)] −
∑

(λ,α∨

i
)<k≤0

R[sαi,k(λ)],

which is equivalent to the claim of the proposition. �

13. The KT -Chevalley formula: operator notation

We can formulate and prove our main result—the equivariant K-theory Cheval-
ley formula—using the operator notation, as follows. Recall that

R[λ] = Rβl
· · ·Rβ1

= Xρ (Xβl +Bβl
) · · · (Xβ2 +Bβ2

) (Xβ1 +Bβ1
)X−ρ,

where (β1, . . . , βl) is a λ-chain.

Theorem 13.1. For any weight λ, the operator R[λ] preserves the space KT (G/B).
For any u ∈ W , we have

[Lλ] · [Ou] = R[λ]([Ou]),

i.e., the operator R[λ] acts on the space KT (G/B) as the operator of multiplication
by the class [Lλ] of the corresponding line bundle.

Proof. Proposition 12.5 says that the operators R[λ] satisfy the same commutation
relations with the elementary Demazure operators Ti as the operators Eλ, see (3.9).
Also R[λ]([O1]) = xλ [O1], by Proposition 14.5. Now Lemma 3.1 implies that the

operator R[λ] preserves KT (G/B) ⊂ K̃T (G/B) and acts as the operator Eλ of
multiplication by the class [Lλ] of the corresponding line bundle. �

In Section 14, we show that Theorem 13.1 is equivalent to Theorem 6.1. In
Sections 15 and 16, we illustrate Theorems 6.1 and 13.1 by several examples.

Remark 13.2. If λ is a dominant weight, then, according to Lemma 6.2, the operator
R[λ] expands as a positive expression in the Bruhat operators Bα, α ∈ Φ+, and the
operators Xµ. Indeed, a reduced λ-chain involves only positive roots. In this case,
Theorem 13.1 gives a positive formula for [Lλ] · [Ou].

Specializing xµ 7→ 1, we obtain the nonequivariant K-theory Chevalley for-
mula. In the following corollary, [Lλ] and [Ow] denote classes in the nonequivariant
Grothendieck ring K(G/B).

Corollary 13.3. Let λ ∈ Λ and (β1, . . . , βl) be a λ-chain. Then the operator

R
[λ]
x=1 = (1 +Bβl

) · · · (1 +Bβ1
)

acts on the Grothendieck ring K(G/B) as the operator of multiplication by the class
[Lλ] of the corresponding line bundle.
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Remark 13.4. We claim that Corollary 13.3 implies the classical Chevalley for-
mula (3.15). In order to derive this formula, we need to collect linear terms in
the expansion of the product (1 +Bβl

) · · · (1 +Bβ1
). Indeed, the coefficient cλu,usα

,
for ℓ(usα) = ℓ(u) − 1, equals to the number of times the term Bα appears in the
expansion minus the number of times B−α appears in the expansion. According to
Lemma 5.3, for any α ∈ Φ+, this coefficient is

#{j | βj = α} − #{j | βj = −α} = −mα(A−λ) = (λ, α∨),

which is exactly the coefficient in the Chevalley formula. Thus, (3.16) and (3.15)
follow.

14. Central points of alcoves

In this section, we show that Theorem 6.1 is equivalent to Theorem 13.1. In
order to do this, we show explicitly the way in which the operator R[λ] acts on
basis elements [Ou]. It is convenient to do this using central points of alcoves.

Let us define the set Z ⊂ h∗R as

Z := {ζ ∈ Λ/h∨ | (ζ, α∨) 6∈ Z for any α ∈ Φ},

i.e., Z is the set of the elements of the lattice Λ/h∨ that do not belong to any
hyperplane Hα,k. Then every element of Z belongs to some alcove. The affine
Weyl group Waff preserves the set Z. This set was considered by Kostant [Kost].

Lemma 14.1. [Kost] Each alcove contains precisely one element of the set Z.
The only element of Z in the fundamental alcove A◦ is ρ/h∨.

Proof. It is enough to prove the statement only for the fundamental alcove, because
Waff acts transitively on the alcoves. Let us express the highest coroot as a linear
combination of simple coroots: θ∨ = c1 α

∨
1 + · · · + cr α

∨
r . Then ci are strictly

positive integers and h∨ = c1 + · · ·+ cr +1. Every element ζ of Z can be written as
ζ = (a1 ω1 + · · · + ar ωr)/h

∨, where a1, . . . , ar ∈ Z. The condition that ζ ∈ Z ∩A◦
can be written as a1, . . . , ar > 0 and (a1 c1 + · · · + ar cr)/(c1 + · · · + cr + 1) < 1,
see (5.2). The only sequence of integers (a1, . . . , ar) that satisfies these conditions is
(1, . . . , 1). Thus Z∩A◦ consists of the single element (ω1+· · ·+ωr)/h

∨ = ρ/h∨. �

For an alcove A, the only element ζA of Z ∩ A is called the central point of
the alcove A. In particular, ζA◦

= ρ/h∨. The map A 7→ ζA is a one-to-one
correspondence between the set of all alcoves and Z.

Lemma 14.2. For a pair of adjacent alcoves A
α

−→ B, we have ζB − ζA = α/h∨.

Proof. It is enough to prove this lemma for the fundamental alcove A = A◦. All
alcoves adjacent to A◦ are obtained from A◦ by the reflections s0, s1, . . . , sr; and

A◦
−αi−→ si(A◦). Applying these reflections to the central point ζA◦

= ρ/h∨, we
obtain si(ζA◦

) − ζA◦
= −αi/h

∨, for i = 0, . . . , r. �

In fact, in the simply-laced case, the converse statement is true as well.

Lemma 14.3. Suppose that Φ is a root system of type A-D-E. Then A
α

−→ B if
and only if ζB − ζA = α/h∨.



AFFINE WEYL GROUPS IN K-THEORY AND REPRESENTATION THEORY 33

Proof. Again, we can assume that A = A◦ is the fundamental alcove. In view
of Lemma 14.2, it remains to show that µ = ρ/h∨ + α/h∨ 6∈ Z, for any root
α ∈ Φ \ {−α1, . . . ,−αr, θ}. For any such α, there is a simple root αi such that
α+ αi is a root. Thus (α, α∨i ) = −1 and (µ, α∨i ) = 0. This implies that µ belongs
to the hyperplane Hαi,0 and, thus, µ 6∈ Z. �

Remark 14.4. In the case of a nonsimply-laced root system, the statement converse
to Lemma 14.2 is not true. In other words, there are nonadjacent alcoves A and B
such that ζB − ζA = α/h∨ for some root α.

Let us now fix an alcove path A◦
−β1
−→ · · ·

−βl−→ A−λ and the associated λ-chain
(β1, . . . , βl). By the definition, the operator R[λ] can be expressed as

(14.1) R[λ] = Xρ (Xβl +Bβl
) · · · (Xβ2 +Bβ2

) (Xβ1 +Bβ1
)X−ρ.

We can expand R[λ] as a sum of 2l terms. For a subset J ⊂ {1, . . . , l}, let R
[λ]
J be

the term that contains Bβj
, if j ∈ J , and Xβj , otherwise. It is convenient to give

the following interpretation for the term R
[λ]
J using tail-flips.

Let π = (0, π0, π1, . . . , πl, µ) be a collection of points in h∗R. We can think of
this collection as a continuous piecewise-linear path in h∗R from 0 to µ. Let j be
an index such that πj−1 6= πj , and let rj be the affine reflection with respect to
the perpendicular bisector of the segment [πj−1, πj ]. In other words, the affine
reflection rj is given by the condition rj(πj−1) = πj . For such an index j, we define
the j-th tail-flip of π as

fj(π) = (0, π0, . . . , πj−1, rj(πj+1), . . . , rj(πl), rj(µ)).

Then fj(π) corresponds to a path from 0 to rj(µ). Let us associate with π the
following composition of operators

Xπ := Xh∨(πl−µ)Xh∨(πl−1−πl) · · ·Xh∨(π0−π1)Xh∨(0−π0) = X−h∨µ.

Then Xfj(π) = X−h∨rj(µ).
Let us now assume that π = (0, ζA0

, . . . , ζAl
,−λ), i.e., πi’s are the central points

of the alcoves Ai. Then

Xπ = XρXβl · · ·Xβ1 X−ρ = Xh∨λ.

Indeed, h∨(0 − ζA◦
) = −ρ, h∨(ζAj−1

− ζAj
) = βj , and h∨(ζA−λ

− (−λ)) = ρ,

see Lemmas 14.1 and 14.2. The expression Xπ is precisely the term R
[λ]
∅ in the

expansion of (14.1).
In this case, rj is the affine reflection with respect to the common face of Aj−1

and Aj and r̄j = sβj
, for j = 1, . . . , l. Suppose that the subset J consists of a single

element j. The corresponding term R
[λ]
{j} in the expansion of (14.1) is obtained from

the above expression Xπ by replacing the term Xβj with Bβj
. Let us commute Bβj

all the way to the left using relation (10.5). We obtain

R
[λ]
{j} = XρXβl · · ·Xβj+1Bβj

Xβj−1 · · ·Xβ1 X−ρ

= Bβj
X r̄j(ρ)X r̄j(βl) · · ·X r̄j(βj+1)Xβj−1 · · ·Xβ1 X−ρ.

The product of X ’s in the last expression is precisely the operator Xfj(π) for the

j-th tail-flip π. In other words, R
[λ]
{j} = Bβj

Xfj(π).
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In general, for a subset J = {j1 < · · · < js} ⊂ {1, . . . , l}, we have

R
[λ]
J = Bβjs

· · ·Bβj1
Xfj1

···fjs (π).

Indeed, let us start with the expression Xπ. Replace the term Xβjs in it with Bβjs
,

and commute it all the way to the left. This leads to the expression Bβjs
Xfjs (π).

Then replace the term Xβjs−1 with Bβjs−1
and commute it to the left. This leads

to the expression Bβjs
Bβjs−1

Xfjs−1
fjs (π), etc.

We have

Xfj1
···fjs (π) = X−h∨ rj1

···rjs (−λ).

According to (10.2), this operator is explicitly given by

Xfj1
···fjs (π) : [Ou] 7−→ x−u rj1

···rjs (−λ) [Ou].

Let us summarize our calculations.

Proposition 14.5. Let λ ∈ Λ be a weight. Let (r1, . . . , rl) and (β1, . . . , βl) be
the λ-chain of reflections and the λ-chain of roots associated with a decomposition
v−λ = si1 · · · sil

. Then the operator R[λ] is given by

R[λ] : [Ou] 7−→
∑

J

x−u rj1
···rjs (−λ)Bβjs

· · ·Bβj1
([Ou]),

over all subsets J = {j1 < · · · < js} ⊂ {1, . . . , l}.

We can now finish the proof Theorem 6.1.

Proof of Theorem 6.1. This follows from Theorem 13.1 and Proposition 14.5. �

15. Examples for type A

In this and the next sections we illustrate our results by presenting several ex-
amples.

Suppose that G = SLn. Then the root system Φ is of type An−1 and the
Weyl group W is the symmetric group Sn. We can identify the space h∗R with
the quotient space V := Rn/R(1, . . . , 1), where R(1, . . . , 1) denotes the subspace
in Rn spanned by the vector (1, . . . , 1). The action of the symmetric group Sn on
V is obtained from the (left) Sn-action on Rn by permutation of coordinates. Let
ε1, . . . , εn ∈ V be the images of the coordinate vectors in Rn. The root system
Φ can be represented as Φ = {αij := εi − εj | i 6= j, 1 ≤ i, j ≤ n}. The simple
roots are αi = αi i+1, for i = 1, . . . , n − 1. The longest coroot is θ∨ = α∨1n.
The fundamental weights are ωi = ε1 + · · · + εi, for i = 1, . . . , n− 1. We have ρ =
nε1+(n−1)ε2 + · · ·+2εn−1+εn. The dual Coxeter number is h∨ = (ρ, θ∨)+1 = n.
The weight lattice is Λ = Zn/Z(1, . . . , 1). We use the notation [λ1, . . . , λn] for a
weight, as the coset of (λ1, . . . , λn) in Zn.

Let nZ ⊂ Λ be the set Z of central points of alcoves scaled by the factor h∨ = n.
The fundamental alcove corresponds to the point ρ in nZ. According Lemma 14.3,

two alcoves are adjacent A
α

−→ B, α ∈ Φ, if and only if the corresponding elements

of nZ are related by nζB − nζA = α. In this case, we write nζA
α

−→ nζB. Thus,
we have the structure of a directed graph with labeled edges on the set nZ. Alcove
paths correspond to paths in this graph. The set nZ can be explicitly described as

nZ = {[µ1, . . . , µn] ∈ Λ | µ1, . . . , µn have distinct residues modulo n}.
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For an element µ = [µ1, . . . , µn] ∈ nZ, there exists an edge µ
αij

−→ (µ + αij) if and
only if µi + 1 ≡ µj mod n. Given a weight λ, the corresponding λ-chains are in
one-to-one correspondence with directed paths in the graph nZ from ρ to ρ− nλ.

Example 15.1. Suppose that n = 4 and λ = ω2 = [1, 1, 0, 0]. The directed path

[4, 3, 2, 1]
−α23−→ [4, 2, 3, 1]

−α13−→ [3, 2, 4, 1]
−α24−→ [3, 1, 4, 2]

−α14−→ [2, 1, 4, 3]

from ρ = [4, 3, 2, 1] to ρ − nω2 = [0,−1, 2, 1] = [2, 1, 4, 3] produces the ω2-chain
(α23, α13, α24, α14).

Example 15.2. For an arbitrary n, we have ω1 = ε1 = [1, 0, . . . , 0]. The path

[n, n− 1, . . . , 1]
−α12−→ [n− 1, n, n− 2, . . . , 1]

−α13−→ [n− 2, n, n− 1, n− 3, . . . , 1]

−α14−→ [n− 3, n, n− 1, n− 2, n− 4, . . . , 1]
−α15−→ · · ·

−α1n−→ [1, n, n− 1, . . . , 2].

from ρ to ρ − nω1 gives the ω1-chain (α12, α13, α14, . . . , α1n). In general, for any
k = 1, . . . , n, we have the εk-chain

(15.1) (αk k+1, αk k+2, . . . , αk n, αk 1, αk 2, . . . , αk k−1)

given by the corresponding path from ρ to ρ− nεk.

Recall that v−λ is the unique element of Waff such that v−λ(A◦) = A−λ. Equiv-
alently, we can define v−λ in terms of central points of alcoves by the condition
v−λ(ρ/h∨) = ρ/h∨ − λ.

Lemma 15.3. Suppose that Φ is of type An−1. Then, for k = 1, . . . , n − 1, the
affine Weyl group element v−ωk

belongs, in fact, to Sn ⊂ Waff . This permutation
is given by

v−ωk
=

(
1 2 · · · n− k n− k + 1 · · · n

k + 1 k + 2 · · · n 1 · · · k

)
∈ Sn ⊂Waff .

Proof. This permutation maps ρ = [n, . . . , 1] to [k, k−1, . . . , 1, n, n−1, . . . , k+1] =
[0,−1, . . . ,−k + 1, n− k, n− k − 1, . . . , 1] = ρ− nωk, as needed. �

Let Rij := Rαij
. Theorem 13.1 implies the following statement.

Corollary 15.4. For k = 1, . . . , n, the operator of multiplication by [Lεk
] in the

Grothendieck ring KT (SLn/B) is given by

R[εk] = Rk k−1Rk k−2 · · ·Rk 1Rk nRk n−1 · · ·Rk k+1.

For k = 1, . . . , n− 1, the operator of multiplication by the line bundle [Lωk
] corre-

sponding to the k-th fundamental weight ωk is given by

(15.2) R[ωk] = R[ε1] · · ·R[εk] =

−→∏

i=1,...,k

←−∏

j=k+1,...,n

Rij .

The combinatorial formula for multiplication by [Lωk
] in the Grothendieck ring

K(SLn/B) that follows from formula (15.2) was originally found in [Len].
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Proof. The expression for R[εk] is given by the εk-chain (15.1). The expression for
R[ωk] can be obtained by simplifying R[ε1] · · ·R[εk], as shown in [Len]. Alternatively,
the reduced decomposition v−ωk

= (sk · · · sn−1)(sk−1 · · · sn−2) · · · (s1 · · · sn−k) for
the permutation v−ωk

given by Lemma 9.3 corresponds to an ωk-chain, see Defini-
tion 5.4. This ωk-chain produces the needed expression for R[ωk]. �

Example 15.5. For n = 3, Corollary 15.4 says that

R[ω1] = R13R12 and R[ω2] = R13R23.

For a weight λ = a1ω1 + · · · + arωr, we can obtain an expression for R[λ] by
concatenation of a1 copies of R[ω1], a2 copies of R[ω2], etc.

Theorem 6.1 says that that the coefficient of [Ow] in the product [Lλ] · [Ou] in
KT (G/B) is given by the sum over subsequences in the λ-chain (β1, . . . , βl) that
give saturated decreasing chains u ⋗ · · · ⋗ w in the Bruhat order on W . Let us
illustrate this theorem by the following two examples.

Example 15.6. Suppose that n = 3, λ = ω1, and u = w◦ = s1s2s1 ∈ W . Let us
calculate the product [Lλ] · [Ou] in KT (SLn/B) using Theorem 6.1. The ω1-chain
(β1, β2) = (α12, α13) is associated with the reduced decomposition s1s2 = v−ω1

.
The corresponding ω1-chain of reflections is (r1, r2) = (s1, s1s2s1) = (sα12,0, sα13,0).
Three out of four subsequences in (β1, β2) correspond to decreasing chains in Bruhat
order starting at w◦: (empty subsequence), (α12), and (α12, α13). Thus we have

[Lω1
] · [Ow◦

] = x−w◦(−ω1)[Ow◦
] + x−w◦r1(−ω1)[Os1s2

] + x−w◦r1r2(−ω1)[Os2
].

We can write this expression as

[L[1,0,0]] · [Ow◦
] = x[0,0,1][Ow◦

] + x[0,1,0][Os1s2
] + x[1,0,0][Os2

].

The character of the irreducible representation Vω1
is obtained from the right-hand

side of this expression by replacing each term xµ[Ow] with eµ:

ch(Vω1
) = e[0,0,1] + e[0,1,0] + e[1,0,0].

Let us give a less trivial example.

Example 15.7. Suppose n = 3 and λ = 2ω1 + ω2 = [3, 1, 0]. The path

[3, 2, 1]
−α12−→ [2, 3, 1]

−α13−→ [1, 3, 2]
−α23−→ [1, 2, 3]

−α13−→ [0, 2, 4]
−α12−→ [−1, 3, 4]

−α13−→ [−2, 3, 5]

from ρ = [3, 2, 1] to ρ− nλ = [−2, 3, 5] gives the λ-chain

(β1, . . . , β6) = (α12, α13, α23, α13, α12, α13),

which is associated with the reduced decomposition v−λ = s1s2s1s0s1s2 in the
affine Weyl group. We have

R[λ] = Rβ6
· · ·Rβ1

= R13R12R13R23 R13R12 = R[ω1]R[ω2]R[ω1].

The corresponding λ-chain of reflections is

(r1, . . . , r6) = (sα12,0, sα13,0, sα23,0, sα13,−1, sα12,−1, sα13,−2).

Suppose that u = s2s1. There are five saturated chains in Bruhat order de-
scending from u: (empty chain), (u ⋗ usα12

= s2), (u ⋗ usα13
= s1), (u ⋗ usα12

⋗
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usα12
sα23

= 1), (u ⋗ usα13
⋗ usα13

sα12
= 1). Thus, the expansion of [Lλ] · [Ou] is

given by the sum over the following subsequences in the λ-chain (β1, . . . , β6):

(empty subsequence), (α12), (α13), (α12, α23), (α13, α12).

The sequence (β1, . . . , β6) contains one empty subsequence, two subsequences of
the form (α12), three subsequences of the form (α13), one subsequence of the form
(α12, α23), and two subsequence of the form (α13, α12). Hence, we have

[Lλ] · [Os2s1
] = x−u(−λ) [Os2s1

] +
(
x−ur1(−λ) + x−ur5(−λ)

)
[Os2

] +

+
(
x−ur2(−λ) + x−ur4(−λ) + x−ur6(−λ)

)
[Os1

] +

+ x−ur1r3(−λ) [O1] +
(
x−ur2r5(−λ) + x−ur4r5(−λ)

)
[O1].

We can explicitly write this expression as

[L[3,1,0]] · [Os2s1
] = x[1,0,3] [Os2s1

] +
(
x[3,0,1] + x[2,0,2]

)
[Os2

] +

+
(
x[1,3,0] + x[1,2,1] + x[1,1,2]

)
[Os1

] + x[3,1,0] [O1] +
(
x[2,2,0] + x[2,1,1]

)
[O1].

The corresponding Demazure character is

ch(V[3,1,0],s2s1
) =

e[1,0,3] + e[3,0,1] + e[2,0,2] + e[1,3,0] + e[1,2,1] + e[1,1,2] + e[3,1,0] + e[2,2,0] + e[2,1,1].

16. Examples for other types

For an arbitrary root system, we can use the explicit construction of the λ-chain
of reflections (r1, . . . , rl) and the λ-chain of roots (β1, . . . , βl) given by Proposi-
tion 6.7.

Example 16.1. Suppose that the root system Φ is of type G2. Let us find λ-
chains for λ = ω1 and λ = ω2 using Proposition 6.7. The positive roots are
γ1 = α1, γ2 = 3α1 + α2, γ3 = 2α1 + α2, γ4 = 3α1 + 2α2, γ5 = α1 + α2, γ6 = α2.
The corresponding coroots are γ∨1 = α∨1 , γ

∨
2 = α∨1 + α∨2 , γ

∨
3 = 2α∨1 + 3α∨2 , γ

∨
4 =

α∨1 + 2α∨2 , γ
∨
5 = α∨1 + 3α∨2 , γ

∨
6 = α∨2 .

Suppose that λ = ω1. The set Rω1
of affine reflections with respect to the

hyperplanes separating the alcoves A◦ and A−ω1
is

Rω1
= {sγ1,0, sγ2,0, sγ3,0, sγ3,−1, sγ4,0, sγ5,0}.

The map h : Rω1
→ Rr+1 given by (6.2) sends these affine reflections to the vectors

(0, 1, 0), (0, 1, 1), (0, 1, 3
2 ), (1

2 , 1,
3
2 ), (0, 1, 2), (0, 1, 3),

respectively. The lexicographic order on vectors in R3 induces the following total
order on the set Rω1

:

sγ1,0 < sγ2,0 < sγ3,0 < sγ4,0 < sγ5,0 < sγ3,−1 .

Suppose now that λ = ω2. The set Rω2
of affine reflections with respect to the

hyperplanes separating A◦ and A−ω2
is

Rω2
= {sγ2,0, sγ3,0, sγ3,−1, sγ3,−2, sγ4,0, sγ4,−1, sγ5,0, sγ5,−1, sγ5,−2, sγ6,0}.

The map h : Rω2
→ Rr+1 sends these affine reflections to the vectors

(0, 1, 1), (0, 2
3 , 1), (1

3 ,
2
3 , 1), (2

3 ,
2
3 , 1), (0, 1

2 , 1), (1
2 ,

1
2 , 1),

(0, 1
3 , 1), (1

3 ,
1
3 , 1), (2

3 ,
1
3 , 1), (0, 0, 1),
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respectively. The lexicographic order on vectors in R3 induces the following total
order on Rω2

:

sγ6,0 < sγ5,0 < sγ4,0 < sγ3,0 < sγ2,0 < sγ5,−1 < sγ3,−1 < sγ4,−1 < sγ5,−2 < sγ3,−2 .

The total orders on Rω1
and Rω2

correspond to the ω1-chain (γ1, γ2, γ3, γ4, γ5, γ3)
and the ω2-chain (γ6, γ5, γ4, γ3, γ2, γ5, γ3, γ4, γ5, γ3). Thus, the operators of multi-
plication by the classes [Lω1

] and [Lω2
] in KT (G/B) are given by

R[ω1] = Rγ3
Rγ5

Rγ4
Rγ3

Rγ2
Rγ1

,

R[ω2] = Rγ3
Rγ5

Rγ4
Rγ3

Rγ5
Rγ2

Rγ3
Rγ4

Rγ5
Rγ6

.

By Lemma 15.3, the element v−ωk
belongs to the (nonaffine) Weyl group W ,

for all fundamental weights ωk in type A. Let us show that a similar phenomenon
occurs for minuscule weights in other types as well. A dominant weight λ is called
minuscule if the set of weights in the G-module Vλ is in the orbit W ·λ of the Weyl
group.

Lemma 16.2. Let λ ∈ Λ+. Then v−λ ∈ W if and only if λ is a minuscule weight.

Proof. Let (β1, . . . , βl) be a reduced λ-chain of roots, and let (r1, . . . , rl) be the
corresponding λ-chain of reflections. According to Lemmas 5.3 and 6.2, the follow-
ing statements are equivalent: (1) v−λ ∈ W ; (2) r1, . . . , rl ∈ W ; (3) all (positive)
roots β1, . . . , βl are distinct; (4) (λ, α∨) = 0 or 1, for any α ∈ Φ+. According to
Corollary 6.6, the condition r1, . . . , rl ∈ W implies that all weights in Vλ are in the
W -orbit W ·λ and, thus, λ is minuscule. On the other hand, if λ is minuscule, then
(λ, α∨) = 0 or 1, for any α ∈ Φ+. Otherwise, if (λ, α∨) ≥ 2, then Vλ contains the
weight λ− α 6∈W · λ. �

The last two examples concern minuscule weights in types B and C. Recall that
the element v−λ is uniquely defined by the condition v−λ(ρ/h∨) = ρ/h∨ − λ. If
v−λ ∈ W , then we can write this condition as v−λ(ρ) = ρ− h∨ λ.

Example 16.3. Suppose that Φ is of type Cr. This root system can be embedded
into Rr as follows: Φ = {±εi±εj, ±2εi | i 6= j}, where ε1, . . . , εr are the coordinate
vectors in Rr. The simple roots are α1 = ε1−ε2, α2 = ε2−ε3, . . .αr−1 = εr−1−εr,
αr = 2εr. The Weyl group W is the semidirect product of Sr and (Z/2Z)r. It acts
on Rr by permuting the coordinates and changing their signs. The fundamental
weights are ωk = ε1 + · · · + εk, k = 1, . . . , r; and ρ = (r, . . . , 1) ∈ Rr. The dual
Coxeter number is h∨ = (ρ, θ∨) + 1 = 2r.

Suppose that λ = ω1. Then ρ − h∨ω1 = (−r, r − 1, r − 2, . . . , 1) ∈ Rr. This
weight is obtained from ρ by applying the Weyl group element s2ε1

that changes
the sign of the first coordinate. Thus v−ω1

= s2ε1
∈ W ⊂ Waff . The only reduced

decomposition of this element is v−ω1
= s1 · · · sr−1 sr sr−1 · · · s1, so ℓ(v−ω1

) = 2r−1.
This reduced decomposition corresponds to the ω1-chain

(α1, s1(α2), s1s2(α3), . . . , s1 . . . sr−1(αr), . . . , s1 . . . sr . . . s2(α1)) =

(ε1 − ε2, ε1 − ε3, · · · , ε1 − εr, 2ε1, ε1 + εr, · · · , ε1 + ε3, ε1 + ε2),

cf. Definition 5.4. The operator R[ω1] is given by

R[ω1] = Rε1+ε2
Rε1+ε3

· · ·Rε1+εr
R2ε1

Rε1−εr
· · ·Rε1−ε3

Rε1−ε2
.
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Example 16.4. Suppose that Φ is of type Br. This root system can be embedded
into Rr as follows: Φ = {±εi ± εj, ±εi | i 6= j}, where ε1, . . . , εr are the coordinate
vectors in Rr. The simple roots are α1 = ε1−ε2, α2 = ε2−ε3, . . .αr−1 = εr−1−εr,
αr = εr. The Weyl group W and its action on Rr are the same as in type Cr. The
fundamental weights are ωk = ε1+· · ·+εk, k = 1, . . . , r−1, and ωr = 1

2 (ε1+· · ·+εr).

We have ρ = (r− 1
2 , . . . , 1−

1
2 ) ∈ Rr. The dual Coxeter number is h∨ = (ρ, θ∨)+1 =

2r.
Suppose that λ = ωr is the last fundamental weight. Then ρ−h∨ωr = (− 1

2 ,−1−
1
2 ,−2− 1

2 , . . . ,−r+ 1
2 ) ∈ Rr. This weight is obtained from ρ by applying the Weyl

group element v−ωr
∈ W ⊂ Waff that reverses the order of all coordinates and

changes their signs. The element v−ωr
∈ W has length ℓ(v−ωr

) = r(r + 1)/2. One
of the reduced decompositions for this element is

v−ωr
= (sr)(sr−1 sr)(sr−2 sr−1 sr) · · · (s2 · · · sr)(s1 · · · sr).

The associated ωr-chain is (αr, sr(αr−1), srsr−1(αr), srsr−1sr(αr−2), . . . ). We can
explicitly find the roots in this ωr-chain and write the operator R[ωr] as

R[ωr] = (Rε1
Rε1+ε2

Rε1+ε3
· · ·Rε1+εr

)(Rε2
Rε2+ε3

Rε2+ε4
· · ·Rε2+εr

) · · ·

· · · (Rεr−2
Rεr−2+εr−1

Rεr−2+εr
)(Rεr−1

Rεr−1+εr
)(Rεr

).

17. Quantum K-theory

In this section, we conjecture a natural Chevalley-type formula in the quan-
tum K-theory of G/B. The quantum K-theory, which is a K-theoretic version of
quantum cohomology, was introduced by Lee [Lee]. The quantum K-theory of flag
varieties, in particular, has been first studied by Givental and Lee [GiLe]. We recall
a few basic facts below.

Let us denote by QK(G/B) the quantum K-theory of G/B. In order to describe
it, we associate a variable qi to each simple root αi, and let Z[q] = Z[q1, . . . , qr]
be the polynomial ring in the qi. Given a collection of nonnegative integers d =
(d1, . . . , dr), called multidegree, we let qd := qd1

1 . . . qdr
r . As a Z[q]-module, the

quantum K-theory is defined as QK(G/B) := K(G/B)⊗Z Z[q]. Let [w] denote the
class of the structure sheaf of the Schubert variety Xw◦w. Then the classes of [w]
form a Z[q]-basis of QK(G/B). The multiplication in QK(G/B) is a deformation
of the classical multiplication:

[u] ◦ [v] =
∑

d

qd
∑

w∈W

Nw
uv(d) [w] ,

where the first sum is over all multidegrees d, and Nw
uv(d) is the quantum K-

invariant of Gromov-Witten type for [u], [v], and the quantum dual of [w]. As
defined in [Lee], this invariant is the K-theoretic push-forward to Spec C of some
natural vector bundle on the moduli spaceM3,0(G/B, d) (via the orientation defined
by the virtual structure sheaf). The associativity of the quantum K-product was
established in [Lee], based on a sheaf-theoretic version of an argument of WDVV-
type.

Let us recall the Chevalley-type formula for the small quantum cohomology
ring QH∗(G/B) of G/B. For type A, this formula was first proved in [FGP].
In general type, it was proved by D. Peterson (unpublished) and by Fulton and
Woodward [FuWo] (who, in fact, obtained a more general formula for G/P ). Again,
as a Z[q]-module, QH∗(G/B) := H∗(G/B)⊗Z[q]. Thus, the quantum cohomology
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ring has a Z[q]-basis basis given by the cohomology classes of Xw◦w, which we
denoted by 〈w〉.

The Chevalley-type formula in QH∗(G/B) can be stated using the quantum
Bruhat operators defined in [BFP]. These are operators on the group algebra
Z[q][W ] of the Weyl group W over Z[q]. For each positive root α, the quantum
Bruhat operator Qα is defined by

Qα(w) =






wsα if ℓ(wsα) = ℓ(w) + 1,

qd(α) wsα if ℓ(wsα) = ℓ(w) − 2 ht(α∨) + 1,
0 otherwise ,

where ht(α∨) = (ρ, α∨) is the height of the coroot α∨, and qd(α) = qd1

1 · · · qdr
r , for

α∨ = d1α
∨
1 + · · · + drα

∨
r , i.e., di = (ωi, α

∨). Also define Qα := −Q−α if α is a
negative root. It was proved in [BFP] that the operatorsQα satisfy the Yang-Baxter
equation.

The map w 7→ 〈w〉 extends linearly to the isomorphism Z[q][W ] → QH∗(G/B)
of Z[q]-modules, for which we use the same notation a→ 〈a〉. Similarly, we extend
the map w 7→ [w]. The Chevalley formula in quantum cohomology can now be
stated, as follows, see [FuWo, BFP].

(17.1) 〈si〉 ∗ 〈w〉 =
∑

α∈Φ+

(ωi, α
∨) 〈Qα(w)〉 ,

where si is a simple reflection and ∗ denotes the product in QH∗(G/B).
Based on Corollary 1.2 and (17.1), we formulate the following conjecture.

Conjecture 17.1. Fix a simple reflection si. Let (β1, . . . , βl) be an ωi-chain of
roots. Then we have

[si] ◦ [w] = [(1 − (1 −Qβ1
) · · · (1 −Qβl

))(w)] ,

where ◦ denotes the product in the ring QK(G/B).

The conjectured formula in QK(G/B) specializes to Corollary 1.2, upon setting
q1 = · · · = qr = 0. It also specializes to QH-Chevalley formula (17.1), upon
taking the linear terms in the expansion of the operator 1− (1−Qβ1

) · · · (1−Qβl
),

cf. Remark 13.4. We can extend this conjecture to the quantum T -equivariant K-
theory of G/B, see [Lee] for the definition of the ring QKT (G/B). We conjecture

that the operator of multiplication by the class [si] in this ring is 1−xw◦(ωi)R
[−ωi]
q ,

where the operator R
[−ωi]
q is obtained from R[−ωi] by replacing all Bruhat operators

Bβ with the quantum Bruhat operators Qβ, cf. Theorem 13.1. It is not hard to
extend this conjecture to generalized partial flag varieties G/P , as well.

A possible approach to proving this conjecture would be an extension of the geo-
metric argument in [FuWo] from quantum cohomology to quantum K-theory. On
the other hand, in classical types it might be possible to find an essentially algebraic
proof in the spirit of the proof of the quantum Chevalley formula from [FGP].

18. Appendix: foldings of galleries, LS-galleries, and LS-paths

In this appendix, we introduce admissible foldings of galleries, and use this notion
to reformulate our model for the characters of the irreducible representations (Corol-
lary 6.6) and for the Demazure characters (Corollary 6.5). For regular weights,
admissible foldings of galleries are similar, but not equivalent, to the LS-galleries
of Gaussent and Littelmann [GaLi]. We clarify this relationship by showing that it
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is based on Dyer’s theorem [Dyer] about the EL-shellability of the Bruhat order.
Then we compare the computational complexity of our model for characters with
that of the model based on LS-paths and root operators.

18.1. Admissible foldings.

Definition 18.1. A gallery is a sequence γ = (F0, A0, F1, A1, F2, . . . , Fl, Al, Fl+1)
such that A0, . . . , Al are alcoves; Fj is a codimension one common face of the alcoves
Aj−1 and Aj , for j = 1, . . . , l; F0 is a vertex of the first alcove A0; and Fl+1 is a
vertex of the last alcove Al. Furthermore, we require that F0 = {0} and Fl+1 = {µ}
for some weight µ ∈ Λ, which is called the weight of the gallery. We say that a
gallery is unfolded if Aj−1 6= Aj , for j = 1, . . . , l.

These galleries are special cases of the generalized galleries in [GaLi].
In this subsection, we will consider only galleries such that A0 = A◦ is the

fundamental alcove. Unfolded galleries of weight µ with A0 = A◦ are in one-to-one
correspondence with alcove paths (A◦, . . . , Al) such that µ ∈ Al. Indeed, Fj should
be the unique common wall of two adjacent alcoves Aj−1 and Aj , for j = 1, . . . , l.

Definition 18.2. Let us say that a gallery γ of weight µ is reduced if A0 = A◦, and
γ has has minimal length among all galleries of weight µ with A0 = A◦. Clearly,
every reduced gallery is unfolded.

Lemma 18.3. Let λ be a dominant weight. Then the last alcove in a reduced
gallery of weight −λ is Al = A−λ. Hence, reduced galleries with an anti-dominant
weight −λ are in one-to-one correspondence with reduced alcove paths from A◦ to
A−λ, which, in turn, correspond to reduced decompositions of v−λ ∈Waff .

Proof. The number of hyperplanes Hα,k that separate the point E = {−λ} from
the fundamental alcove A◦ is m =

∑
α∈Φ+(λ, α∨). Thus, the length of any alcove

path from A◦ to an alcove Al with vertex E should be at least m. The number
m is precisely the length of a reduced alcove path from A◦ to A−λ. On the other
hand, for any other alcove A′ 6= A−λ such that E is a vertex of A′, the number of
hyperplanes that separate A′ from A◦ is strictly greater than m. �

For a gallery γ = (F0, A0, F1, . . . , Fl, Al, Fl+1), let r1, . . . , rl ∈ Waff denote
the affine reflections with respect to the affine hyperplanes containing the faces
F1, . . . , Fl. For j = 1, . . . , l, let the j-th tail-flip operator fj be the operator that
sends the gallery γ = (F0, A0, F1, . . . , Fl, Al, Fl+1) to the gallery fj(γ) given by

fj(γ) := (F0, A0, F1, A1, . . . , Aj−1, F
′
j = Fj , A

′
j , F

′
j+1, A

′
j+1, . . . , A

′
l, F
′
l+1),

where A′i := rj(Ai) and F ′i := rj(Fi), for i = j, . . . , l + 1. In other words, the
operator fj leaves the initial segment of the gallery from A0 to Aj−1 intact and
reflects the remaining tail by rj . Clearly, the operators fj commute. Hence, they
determine an action of the group (Z/2Z)l on galleries. Every gallery is obtained
from an unfolded gallery by applying several tail-flips. Equivalently, using the
operators fj , one can always transform (unfold) an arbitrary gallery into a uniquely
defined unfolded gallery.

Lemma 18.4. If γ is a gallery of weight µ, then fj1 · · · fjs
(γ) is a gallery of weight

rj1 · · · rjs
(µ), for any 1 ≤ j1 < · · · < js ≤ l.

Proof. First, let us apply fjs
to γ. We obtain a gallery of weight rjs

(µ). Applying
the tail-flip fjs−1

to fjs
(γ) changes its weight to rjs−1

rjs
(µ), etc. �
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Definition 18.5. Let γ be an unfolded gallery, and let r1, . . . , rl be the affine
reflections with respect to the faces of γ. An admissible folding of γ is a gallery of
the form fj1 · · · fjs

(γ) for some 1 ≤ j1 < · · · < js ≤ l such that

1 ⋖ r̄j1 ⋖ r̄j1 r̄j2 ⋖ · · · ⋖ r̄j1 r̄j2 · · · r̄js

is a saturated increasing chain in the Bruhat order on the Weyl group W . More
generally, for u ∈ W , a u-admissible folding of γ is a gallery of the form fj1 · · · fjs

(γ)
for some 1 ≤ j1 < · · · < js ≤ l such that

u⋗ u r̄j1 ⋗ u r̄j1 r̄j2 ⋗ · · · ⋗ u r̄j1 r̄j2 · · · r̄js

is a saturated decreasing chain in the Bruhat order on the Weyl group W . We allow
s = 0, so the gallery γ itself is an admissible (u-admissible) folding of γ. Notice
that admissible foldings are precisely w◦-admissible foldings.

We can also give the following intrinsic characterization of u-admissible foldings.

Lemma 18.6. Let γ′ = (A′0, F
′
1, . . . , F

′
l , A

′
l, E
′) be a gallery, and r′1, . . . , r

′
l be the

affine reflections with respect to the faces F ′1, . . . , F
′
l . Let {j1 < · · · < js} := {j ∈

{1, . . . , l} | A′j−1 = A′j}. Then the gallery γ′ is a u-admissible folding of some
unfolded gallery γ if and only if

u−1 ⋗ r̄′j1 u
−1 ⋗ r̄′j1 r̄

′
j2 u
−1 ⋗ · · · ⋗ r̄′j1 r̄

′
j2 · · · r̄

′
js
u−1

is a saturated decreasing chain in the Bruhat order on the Weyl group W .

Proof. We have γ′ = fj1 · · · fjs
(γ). Let r1, . . . , rl be the reflections with respect to

the faces of the unfolded gallery γ. Then

r′j1 = rj1 , r
′
j2 = rj1rj2rj1 , r

′
j3 = rj1rj2rj3rj2rj1 , . . .

This implies r′j1r
′
j2 · · · r

′
ji

= (rj1rj2 · · · rji
)−1, for i = 1, . . . , s. Now the lemma

follows from Definition 18.5. �

Corollaries 6.5 and 6.6 are equivalent to the following claim. Let weight(γ)
denote the weight of a gallery γ.

Corollary 18.7. Let λ be a dominant weight, and let γ be a reduced gallery with
weight(γ) = −λ.
(1) The character ch(Vλ) is equal to the sum

ch(Vλ) =
∑

γ′

e−weight(γ′)

over all admissible foldings γ′ of the gallery γ.
(2) Let u ∈ W . The Demazure character ch(Vλ,u) is equal to the sum

ch(Vλ,u) =
∑

γ′

e−u(weight(γ′))

over all u-admissible foldings γ′ of the gallery γ.
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18.2. LS-galleries. In this section, we discuss the relationship between admissible
foldings and LS-galleries of Gaussent and Littelmann in case of a regular weight
λ. We show that LS-galleries can be associated with admissible foldings of some
special reduced galleries.

We start by recalling some terminology from [GaLi]. Let us fix a dominant
regular weight λ. Let us say that a gallery γ of weight λ is minimal if γ crosses
only the hyperplanes strictly separating 0 and λ. Note that in such a gallery we
have A0 = A◦, and the last alcove Al is w◦(A◦) + λ = −A◦ + λ.

Recall that the facets of the fundamental alcove are Hi = Hαi,0, for i = 1, . . . , r;
and H0 = Hα0,−1. If F is a face of the fundamental alcove A◦, we define its type
by

type(F ) = {i | F ⊂ Hi, i = 0, 1, . . . , r} .

For instance, type({0}) = {1, . . . , r} and type(A◦) = ∅. For an arbitrary face F , its
type is defined as type(F ′), where F ′ is the unique face of A◦ such that F = w(F ′)
for some w in Waff . The type of a gallery γ = (F0, A0, F1, . . . , Al, Fl+1) is defined
as type(γ) = (type(F0), type(A0), . . . , type(Fl+1)).

For a gallery γ = (F0, A0, F1, . . . , Al, Fl+1), let {j1 < . . . < js} = {j | Aj−1 =
Aj}, and let rj be the reflections with respect to the hyperplanes containing the
faces Fj . The companion of γ is the sequence (u0, . . . , us) of elements in W , where
u0 ∈ W is the unique element such that u(A◦) = A0; and ui = r̄ji

ui−1, for i =
1, . . . , s.

Definition 18.8. [GaLi] For a minimal gallery γ of a (dominant regular) weight
λ, the set ΓLS(γ) of LS-galleries associated with γ is the set of all galleries γ′ such
that (1) type(γ′) = type(γ); and (2) the companion (u0, . . . , us) of γ′ is a saturated
decreasing chain in the Bruhat order on W .

The general definition of LS-galleries given is [GaLi] for arbitrary dominant
weights λ is more complicated. They are defined as certain collections of faces
of alcoves that satisfy several conditions, including some positivity and dimension
conditions. The companion of such a gallery is a chain in the Bruhat order on the
quotient W/Wλ. For regular weights, the definition of LS-galleries from [GaLi] is
equivalent to the simplified definition above.

It was shown in [GaLi] that, for a minimal gallery γ of weight λ,

ch(Vλ) =
∑

γ′∈ΓLS(γ)

eweight(γ′).

Let us now clarify the relationship between Corollary 18.7.(1) and this statement.
Let us say that a gallery of γ = (F0, A0, F1, . . . , Al, Fl+1) is special if l ≥ N =

|Φ+| (the number of positive roots) and all alcoves A0, . . . , AN and faces F1, . . . , FN

are adjacent to the origin 0. Let us define the transformation

t : {special galleries of weight −µ} −→ {galleries of weight µ}.

For a special gallery γ = (F0, A0, F1, . . . , Al, Fl+1) of weight −µ, the gallery t(γ) is
defined as follows: (1) remove the first N alcoves A0, . . . , AN−1 from the gallery γ
together with the faces F1, . . . , FN ; (2) translate all remaining alcoves and faces by
the weight µ; (3) reverse the sequence of alcoves and faces in the gallery. In other
words,

t : (F0, A0, . . . , Al, Fl+1) 7−→ (Fl+1 + µ,Al + µ, . . . , FN+1 + µ,AN + µ, F0 + µ),
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If γ = (F0, A0, F1, . . . , Al, Fl+1) is a special reduced gallery of weight −λ (Defi-
nition 18.2), then AN = w◦(A◦) and Fi ⊂ Hβi,0, for i = 1, . . . , N . All foldings of γ
are also special. The image t(γ) of γ is a minimal gallery of weight λ. Moreover,
all minimal galleries are of this form. Notice that, for a regular weight λ, we can
always find a special reduced gallery of weight −λ.

Proposition 18.9. Let γ be a special reduced gallery of weight −λ, where λ is a
regular weight. Then the map γ′ 7→ t(γ′) is a bijection between the set of admissible
foldings of γ and the set ΓLS(t(γ)) of LS-galleries associated with t(γ). Moreover,
we have weight(t(γ′)) = −weight(γ′).

The proof of this proposition is based on the following fundamental (and non-
trivial) result, which expresses the EL-shellability of the Bruhat order on a Weyl
group, and is closely related to the Verma theorem [Ver]. This result was proved
for an arbitrary Coxeter group in [Dyer, Proposition 4.3]. We also refer to [BFP,
Theorem 6.4] for a new approach and a different generalization. Recall that reflec-
tion orderings [Hum, Dyer] are total orders on roots in Φ+ that are associated with
reduced decompositions w◦ = si1 . . . siN

for w◦, as follows:

αiN
< siN

(αiN−1
) < . . . < siN

siN−1
. . . si2(αi1 ) .

Proposition 18.10. [Dyer, BFP] Fix a reflection ordering β1 < · · · < βN . For
any Weyl group element w, there is a unique saturated increasing chain in Bruhat
order from 1 to w of the form

(18.1) 1 ⋖ sβj1
⋖ sβj1

sβj2
⋖ . . .⋖ sβj1

. . . sβjp
= w ,

where 1 ≤ j1 < . . . < jp ≤ N .

Proof of Proposition 18.9. Let γ′ be an arbitrary admissible folding of γ. Every
tail-flip operator fj preserves the type of γ′, that is, type(γ′) = type(fj(γ

′)), and
changes its weight by a multiple of a root. Hence, the transformation t applied to
γ′ can be viewed as a composition of the translation by λ with a translation by an
element of the root lattice. Note that the second translation is an element of Waff .
Recalling that γ is mapped to t(γ) via the translation by λ, we conclude that the
gallery t(γ′) has the same type as t(γ).

Let us now examine the companion of t(γ′). Let r1, . . . , rl and r′1, . . . , r
′
l be the

affine reflections with respect to the faces of γ and γ′, respectively. Let p be such
that jp ≤ N and jp+1 > N . Assume that γ′ = fj1 · · · fjs

(γ), where j1 < · · · < js,
so

1 ⋖ r̄j1 ⋖ r̄j1 r̄j2 ⋖ · · · ⋖ r̄j1 r̄j2 · · · r̄js

is a saturated decreasing chain in the Bruhat order. The companion of t(γ′) is the
sequence

(u0 = r̄j1 . . . r̄js
, r̄′js

u0, r̄
′
js−1

r̄′js
u0, . . . , r̄

′
jp+1

. . . r̄′js
u0) .

But since r′j1r
′
j2 · · · r

′
ji

= (rj1rj2 · · · rji
)−1, for i = 1, . . . , s (see the proof of Lemma

18.6), the companion of t(γ′) is the sequence

(r̄j1 . . . r̄js
, r̄j1 . . . r̄js−1

, . . . , r̄j1 . . . r̄jp
) ,

which is a saturated decreasing chain in Bruhat order. We have thus shown that
the image of map t is contained in ΓLS(γ).

It suffices to construct the inverse map. Recall that the first N faces Fi of Γ
satisfy Fi ⊂ Hβi,0. This gives a reflection ordering β1 < · · · < βN , according to
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Lemma 5.3. Given a gallery γ′′ in ΓLS(t(γ)), assume that its companion ends at
some w in W . According to Proposition 18.10, there is a unique way of writing
w = sβj1

. . . sβjp
for 1 ≤ j1 < . . . < jp ≤ N , such that (18.1) holds.

Let us now relabel the faces of γ′′ as follows: (F ′l+1, A
′
l, F
′
l , A

′
l−1, F

′
l−1, . . .).

Let {jp+1 < . . . < js} = {j | A′j−1 = A′j}. We associate with γ′′ the gallery

fj1 . . . fjp
fjp+1

. . . fjs
(γ). The facts stated above imply that this construction gives

the inverse map to t. �

Remark 18.11. (i) For a nonregular weight λ, it is not clear how to associate LS-
galleries with our admissible foldings.
(ii) According to [GaLi], one can associate a collection of continuous piecewise-linear
Littelmann paths with the set of LS-galleries ΓLS(γ) by connecting the centers of
faces in the galleries. In [LePo], we will discuss other ways to associate Littelmann
paths to our admissible foldings of a gallery.

18.3. Comparison of computational complexities. We conclude with a com-
parison between the computational complexities of our construction and the con-
struction of LS-paths based on root operators.

Fix a root system of rank r with N positive roots, a dominant weight λ, and
a Weyl group element u of length l. We want to determine the character of the
Demazure module Vλ,u. Let d be its dimension, and let L be the length of the
affine Weyl group element v−λ (that is, the number of affine hyperplanes separating
the fundamental alcove A◦ and A◦ − λ). Note that L = 2(λ, ρ∨), where ρ∨ =
1
2

∑
β∈Φ+ β∨. We claim that the complexity of our character formula is O(d lL).

Indeed, we start by determining an alcove path via the method described at the
end of Section 6, which involves sorting a sequence of L rational numbers. The
complexity is O(L logL), and note that logL is, in general, much smaller than d
(see below for some examples). Whenever we examine some subword of the word
of length L we fixed at the beginning, we have to check at most L− 1 ways to add
an extra reflection at the end. On the other hand, in each case, we have to check
whether, upon multiplying by the corresponding nonaffine reflection, the length
decreases by precisely 1. The complexity of the latter operation is O(l), based
on the Strong Exchange Condition [Hum, Theorem 5.8]. Then, for each “good”
subword, we have to do a calculation, namely applying at most 2l affine reflections
to −λ. In fact, it is fairly easy to implement this algorithm.

Now let us examine at the complexity of the algorithm based on root operators
for constructing the LS-paths associated with λ. In other words, we are looking
at the complexity of constructing the corresponding crystal graph. We have to
generate the whole crystal graph first, and then figure out which paths give weights
for the Demazure module. For each path, we can apply r root operators. Each path
has at most N linear steps, so applying a root operator has complexity O(N). But
now we have to check whether the result is a path already determined, so we have to
compare the obtained path with the other paths (that were already determined) of
the same rank in the crystal graph (viewed as a ranked poset). This has complexity
O(NM), where M is the maximum number of elements of the same rank. Since we
have at most N + 1 ranks, M is at least d/(N + 1). In conclusion, the complexity
is O(drNM), which is at least O(d2r).

Let us get a better picture of how the two results compare. Assume we are in
a classical type, and let us first take λ to be the i-th fundamental weight, with i
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fixed, plus u = w◦. Clearly l is O(r2), L is O(r), and d is O(ri), so the complexity
of our formula is O(ri+3). For LS-paths, we get at least O(r2i+1). So the ratio
between the complexity in the model based on LS-paths and our model is at least
O(ri−2).

Let us also take λ = ρ. In this case d = 2N , and a simple calculation shows
that L is O(r3). Our formula has complexity O(2Nr5), while the model based on
LS-paths has complexity at least O(22Nr). So the ratio between the complexities
is at least O(2N/r4), where N is r(r + 1)/2, r2, and r2 − r in types A, B/C, and
D, respectively.
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[Dem] M. Demazure. Désingularization des variétés de Schubert. Annales E.N.S., 6:53–88, 1974.
[Deo1] V. V. Deodhar. Some characterizations of Bruhat ordering on a Coxeter group and deter-
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[Ver] D.-N. Verma. Möbius inversion for the Bruhat ordering on a Weyl group. Ann. Sci. cole

Norm. Sup. (4), 4:393–398, 1971.

Department of Mathematics and Statistics, State University of New York, Albany,

NY 12222

E-mail address: lenart@csc.albany.edu

Department of Mathematics, M.I.T., Cambridge, MA 02139

E-mail address: apost@math.mit.edu

http://arXiv.org/abs/math/0105014

	1. Introduction
	2. Notation
	3. Equivariant K-theory of generalized flag varieties
	4. Demazure characters
	5. Affine Weyl groups
	6. The KT-Chevalley formula
	7. Generalization to G/P
	8. Applications: KT-Pieri formula and duality formulas
	9. The Yang-Baxter equation
	10. Bruhat operators
	11. Commutation relations
	12. Path operators
	13. The KT-Chevalley formula: operator notation
	14. Central points of alcoves
	15. Examples for type A
	16. Examples for other types
	17. Quantum K-theory
	18. Appendix: foldings of galleries, LS-galleries, and LS-paths
	18.1. Admissible foldings
	18.2. LS-galleries
	18.3. Comparison of computational complexities

	References

