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Abstract. We present a simple combinatorial model for the characters of the irreducible representations of
complex semisimple Lie groups and, more generally, for Demazure characters. On the other hand, we give an
explicit combinatorial Chevalley-type formula for the T -equivariant K-theory of generalized flag manifolds
G/B. The construction is given in terms of alcove paths, which correspond to decompositions of affine Weyl

group elements, and saturated chains in the Bruhat order on the (nonaffine) Weyl group. A key ingredient
is a certain R-matrix, that is, a collection of operators satisfying the Yang-Baxter equation. Our model has
several advantages over the Littelmann path model and the LS-galleries of Gaussent and Littelmann. The
relationship between our model and the latter ones is yet to be explored.

Résumé. Nous présentons un modèle combinatoire simple pour les caractères des représentations d’un
groupe de Lie complexe semisimple et, en général, pour les caractères de Demazure. D’autre part, nous
présentons une généralisation combinatoire de la formule de Chevelley pour la K-théorie équivariante des
variétés de drapeaux G/B. Notre construction est en termes de chemins sur les alcôves déterminées par
le groupe de Weyl affine (qui correspondent aux décompositions réduites dans ce groupe) et de chemins
saturés sur le groupe de Weyl (nonaffine). Un ingrédient important est une certaine R-matrice, c’est-à-dire
une collection des opératoires qui vérifient l’équation de Yang-Baxter. Notre modèle a plusieurs avantages
par comparaison avec le modèle de chemins de Littelmann et les galeries LS de Gaussent et Littelmann. La
relation entre notre modèle et les deux autres n’a pas encore été étudiée.

1. Introduction

Littelmann paths give a model for characters of irreducible representations Vλ of a semisimple Lie group
G, and, more generally, for a complex symmetrizable Kac-Moody algebra. The theory extends to the char-
acters of Demazure modules Vλ,w, which are B-modules. Littelmann [Li1, Li2] showed that the mentioned
characters can be described by counting certain continuous paths in h∗

R
. These paths are constructed re-

cursively, using certain operators acting on them, known as root operators. A special case of Littelmann
paths are the Lakshmibai-Seshadri paths (L-S paths), which have been introduced before, in the context of
standard monomial theory [LS1]. L-S paths also have a nonrecursive characterization.

A geometric application of Littelmann paths was given by Pittie and Ram [PR], who used them to derive
a Chevalley-type multiplication formula in the T -equivariant K-theory of the generalized flag variety G/B.
Let KT (G/B) be the Grothendieck ring of T -equivariant coherent sheaves on G/B. According to Kostant
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and Kumar [KK], the ring KT (G/B) is a free module over the representation ring R(T ) of the maximal
torus, with basis given by the classes [Ow] of structure sheaves of Schubert varieties. Pittie and Ram showed
that the basis expansion of the product of [Ow] with the class [Lλ] of a line bundle can be expressed as
a sum over certain L-S paths. The Pittie-Ram formula extends the classical Chevalley formula [Chev] for
the cohomology ring H∗(G/B), and its special case for the cohomology of the classical flag variety SLn/B,
known as Monk’s rule.

Let us also mention some important results related to the Pittie-Ram formula. The fact that the product
in this formula expands as a nonnegative combination was also explained by Brion [Bri] and Mathieu [Mat].
Brion [Bri] noted that the special case of the Pittie-Ram formula corresponding to a fundamental weight is
closely related to the multiplication of [Ow] with the class of the structure sheaf of a codimension 1 Schubert
variety (that is, to the hyperplane section of a Schubert variety in equivariant K-theory). The coefficients
in the Pittie-Ram formula were identified as certain characters by Lakshmibai and Littelmann [LL] using
geometry. Finally, Littelmann and Seshadri [LS2] showed that the Pittie-Ram formula is a consequence of
standard monomial theory [LS1, Li3], and, furthermore, that it is almost equivalent to standard monomial
theory.

When it comes to explicit calculations, it is often quite difficult to use the Littelmann path model, for
the following reasons.

• The recursive process of constructing Littelmann paths via root operators is quite complex. On
the other hand, there is no nonrecursive characterization of Littelmann paths in general, with the
exception of L-S paths (see the next remark).

• L-S paths are not purely combinatorial objects, since their characterization involves rational num-
bers. Furthermore, their complexity is reflected in the fact that some applications (the Pittie-Ram
formula, standard monomial theory [LLM]) require, in the case of nonregular weights λ, Deodhar’s
lift operators W/Wλ → W from cosets modulo parabolic subgroups; these operators are defined
by a nontrivial recursive procedure. The picture becomes even more complicated when, beside
Wλ, there is another parabolic subgroup involved; this siuation appears, for instance, in standard
monomial theory [LLM].

• The recently defined LS-galleries [GL], which are closely related to the path model, are given by
complicated conditions.

• L-S paths did not seem to allow an extension of the Pittie-Ram formula to the case of arbitrary
weights λ.

• It is difficult to use L-S paths to compute hyperplane sections of Schubert varieties via Brion’s
result mentioned above, because the Pittie-Ram formula would have to be applied a large number
of times. Essentially, this means that the Pittie-Ram formula is hard to “invert”.

In this paper, we present an alternative model for both Demazure characters and Chevalley-type formulas
in KT (G/B). This model has the following nice features.

• It is simple, nonrecursive, and purely combinatorial (no rational numbers are involved). The
related computations are very explicit and straightforward, since they only involve enumerating
certain saturated chains in Bruhat order.

• Deodhar’s lifts from cosets modulo parabolic subgroups are not needed.
• The corresponding Chevalley-type formula is equally simple for any weight, regular or nonregular,

dominant or nondominant.
• This formula is straightforward to “invert”, in order to compute hyperplane sections of Schubert

varieties in T -equivariant K-theory.

Our model is based on enumerating certain saturated chains in the Bruhat order on the corresponding
Weyl group. This enumeration is determined by an alcove path, which is a sequence of adjacent alcoves
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for the affine Weyl group of the Langland’s dual group G∨. Alcove paths correspond to representations of
elements in the affine Weyl group as products of generators.

Our Chevalley-type formula in KT (G/B) can be conveniently formulated in terms of a certain R-matrix,
that is, in terms of a collection of operators satisfying the Yang-Baxter equation. We express the operator
Eλ of multiplication by the class of a line bundle [Lλ] ∈ KT (G/B) as a composition R[λ] of elements of the
R-matrix given by an alcove path. In order to prove the formula, we simply verify that the operators R[λ]

satisfy the same commutation relations with the elementary Demazure operators Ti as the operators Eλ.
Currently, we are working on clarifying the relationship between the Littelmann path model and LS-

galleries on the one hand, and our construction on the other hand. We are planning to describe root
operators and give an explicit Littlewood-Richardson rule in terms of our model in forthcoming publications.
Generalizing our construction to Kac-Moody groups is also a joint project.

We are grateful to Shrawan Kumar, V. Lakshmibai, and Andrei Zelevinsky for helpful comments.

2. Notation

Let G be a connected, simply connected, simple complex Lie group. Fix a Borel subgroup B and a
maximal torus T such that G ⊃ B ⊃ T . Let h be the corresponding Cartan subalgebra of the Lie algebra g

of G. Let r be the rank of Cartan subalgebra h. Let Φ ⊂ h∗ be the corresponding irreducible root system.
Let h∗

R
⊂ h∗ be the real span of the roots. Let Φ+ ⊂ Φ be the set of positive roots corresponding to our choice

of B. Then Φ is the disjoint union of Φ+ and Φ− = −Φ+. Let α1, . . . , αr ∈ Φ+ be the corresponding set of
simple roots, which form a basis of h∗

R
. Let (λ, µ) denote the scalar product on h∗

R
induced by the Killing form.

Given a root α, the corresponding coroot is α∨ := 2α/(α, α). The collection of coroots Φ∨ := {α∨ : α ∈ Φ}
forms the dual root system.

The Weyl group W ⊂ Aut(h∗
R
) of the Lie group G is generated by the reflections sα : h∗

R
→ h∗

R
, for

α ∈ Φ, given by sα : λ 7→ λ − (λ, α∨) α. In fact, the Weyl group W is generated by simple reflections
s1, . . . , sr corresponding to the simple roots si := sαi

. An expression of a Weyl group element w as a
product of generators w = si1 · · · sil

which has minimal length is called a reduced decomposition for w; its
length `(w) = l is called the length of w. The Weyl group contains a unique longest element w◦ with maximal
length `(w◦) = |Φ+|. For u, w ∈ W , we say that u covers w, and write u m w, if w = usβ, for some β ∈ Φ+,
and `(u) = `(w) + 1. The transitive closure of the relation m is called the Bruhat order on W .

The weight lattice Λ is given by Λ := {λ ∈ h∗
R

: (λ, α∨) ∈ Z for any α ∈ Φ}. The weight lattice Λ is
generated by the fundamental weights ω1, . . . , ωr, which are defined as the elements of the dual basis to the
basis of simple coroots, i.e., (ωi, α

∨
j ) = δij . The set Λ+ of dominant weights is given by Λ+ := {λ ∈ Λ :

(λ, α∨) ≥ 0 for any α ∈ Φ+}.
Let ρ := ω1 + · · · + ωr = 1

2

∑

β∈Φ+ β. The height of a coroot α∨ ∈ Φ∨ is (ρ, α∨) = c1 + · · · + cr if

α∨ = c1α
∨
1 + · · · + crα

∨
r . Since we assumed that Φ is irreducible, there is a unique highest coroot θ∨ ∈ Φ∨

that has maximal height. The dual Coxeter number is h∨ := (ρ, θ∨) + 1.

3. The K-theory of Generalized Flag Varieties

The generalized flag variety G/B is a smooth projective variety. It decomposes into a disjoint union of
Schubert cells X◦w := BwB/B indexed by elements w ∈ W of the Weyl group. The closures of Schubert cells
Xw := X◦w are called Schubert varieties. Let Ow := OXw

be the structure sheaves of Schubert varieties Xw.
The group of characters X = X(T ) of the maximal torus T is isomorphic to the weight lattice Λ.

Its group algebra Z[X ] = R(T ) is the representation ring of T . This is generated by formal exponents
{xλ : λ ∈ Λ} with multiplication xλ · xµ := xλ+µ, i.e., Z[X ] = Z[x±ω1 , · · · , x±ωr ] is the algebra of Laurent
polynomials in r variables. Let Lλ := G×B Cλ be the line bundle over G/B associated with the weight λ.

Denote by KT (G/B) the Grothendieck ring of coherent T -equivariant sheaves on G/B. According to
Kostant and Kumar [KK], the Grothendieck ring KT (G/B) is a free Z[X ]-module. The classes [Ow] ∈
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KT (G/B) of the structure sheaves Ow form a Z[X ]-basis of KT (G/B). The classes [Lλ] ∈ KT (G/B) of the
line bundles Lλ span the Grothendieck ring (as a Z[X ]-module). The product [Lλ] · [Ou] in the Grothendieck
ring KT (G/B) can be written as a finite sum

(3.1) [Lλ] · [Ou] =
∑

w∈W, µ∈Λ

cλ,µ
u,w xµ [Ow],

where cλ,µ
u,w are some integer coefficients. It makes sense to call these coefficients KT -Chevalley coefficients ;

indeed, they are related to the coefficients in Chevalley’s formula via applying the Chern character map to
both sides of (3.1). In this paper, we present an explicit combinatorial formula for cλ,µ

u,w, see Theorems 5.1

and 6.2. We will see that cλ,µ
u,w = 0 unless w ≤ u in the Bruhat order, and that cλ,µ

u,u = δλ,µ.

If λ is a dominant weight, then we will see that all coefficients cλ,µ
u,w are nonnegative. In this case,

Pittie and Ram [PR] showed that cλ,µ
u,w count certain L-S paths, cf. also Lakshmibai-Littelmann [LL] and

Littelmann-Seshadri [LS2].

4. Affine Weyl Groups

Let Waff be the affine Weyl group for the Langland’s dual group G∨. The affine Weyl group Waff is
generated by the affine reflections sα,k : h∗

R
→ h∗

R
, for α ∈ Φ and k ∈ Z, that reflect the space h∗

R
with respect

to the affine hyperplanes

(4.1) Hα,k := {λ ∈ h∗
R

: (λ, α∨) = k}.

The hyperplanes Hα,k divide the real vector space h∗
R

into open regions, called alcoves. The following
important property can be found, e.g., in [Hum, Chapter 4].

Lemma 4.1. The affine Weyl group Waff acts simply transitively on the collection of all alcoves.

The fundamental alcove A◦ is given by

A◦ := {λ ∈ h∗
R

: 0 < (λ, α∨) < 1 for all α ∈ Φ+}.

Lemma 4.1 implies that, for any alcove A, there exists a unique element vA of the affine Weyl group Waff

such that vA(A◦) = A. Hence the map A 7→ vA is a one-to-one correspondence between alcoves and elements
of the affine Weyl group.

Recall that θ∨ ∈ Φ∨ is the highest coroot. Let θ ∈ Φ+ be the corresponding root, and let α0 := −θ.
The fundamental alcove A◦ is, in fact, the simplex given by

(4.2) A◦ = {λ ∈ h∗
R

: 0 < (λ, α∨i ) for i = 1, . . . , r, and (λ, θ∨) < 1},

Lemma 4.1 also implies that the affine Weyl group is generated by the set of reflections s0, s1, . . . , sk with
respect to the walls of the fundamental alcove A◦, where s0 := sα0,−1 and s1, . . . , sr ∈ W are the simple
reflections si = sαi,0. As before, a decomposition v = si1 · · · sil

∈ Waff is called reduced if it has minimal
length; its length `(v) = l is called the length of v.

We say that two alcoves A and B are adjacent if B is obtained by an affine reflection of A with respect
to one of its walls. In other words, two alcoves are adjacent if they are distinct and have a common wall.

For a pair of adjacent alcoves, let us write A
β
−→ B if the common wall of A and B is of the form Hβ,k

and the root β ∈ Φ points in the direction from A to B. By definition, all alcoves that are adjacent to the

fundamental alcove A◦ are obtained from A◦ by the reflections s0, · · · , sr, and A◦
−αi−→ si(A◦).

Definition 4.2. An alcove path is a sequence of alcoves (A0, A1, . . . , Al) such that Aj−1 and Aj are
adjacent, for j = 1, . . . , l. Let us say that an alcove path is reduced if it has minimal length l among all
alcove paths from A0 to Al.
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Let v 7→ v̄ be the homomorphism Waff → W defined by ignoring the affine translation. In other words,
s̄α,k = sα ∈ W .

The following Lemma, which is essentially well-known, summarizes some properties of decompositions
in affine Weyl groups, cf. [Hum].

Lemma 4.3. Let v be any element of Waff , and let A = v(A◦) be the corresponding alcove. Then the
decompositions v = si1 · · · sil

of v (reduced or not) as a product of generators in Waff are in one-to-one

correspondence with alcove paths A0
−β1
−→ A1

−β2
−→ · · ·

−βl
−→ Al from the fundamental alcove A0 = A◦ to Al = A.

This correspondence is explicitly given by Aj = si1 · · · sij
(A◦), for j = 0, . . . , l; and the roots β1, . . . , βl are

given by

(4.3) β1 = αi1 , β2 = s̄i1(αi2 ), β3 = s̄i1 s̄i2(αi3 ), . . . , βl = s̄i1 · · · s̄il−1
(αil

).

Let rj ∈ Waff denote the affine reflection with respect to the common wall of the alcoves Aj−1 and Aj , for
j = 1, . . . , l. Then the affine reflections r1, . . . , rl are given by

(4.4) r1 = si1 , r2 = si1si2si1 , r3 = si1si2si3si2si1 , . . . , rl = si1 · · · sir
· · · si1 .

We have r̄i = sβi
and v = si1 · · · sil

= rl · · · r1.

The affine translations by weights preserve the set of affine hyperplanes Hα,k, and map alcoves to alcoves.
For λ ∈ Λ, let Aλ = A◦+ λ be the alcove obtained by the affine translation of the fundamental alcove A◦ by
the vector λ. Let vλ = vAλ

be the corresponding element of Waff , i.e,. vλ is defined by vλ(A◦) = Aλ. Note
that vλ may not be an affine translation, although it translates the alcove A◦.

Definition 4.4. Let λ be a weight, and let v−λ = si1 · · · sil
be any decomposition, reduced or not,

of v−λ as a product of generators of Waff . Let r1, . . . , rl ∈ Waff be the affine reflections given by (4.4),
and let β1, . . . , βl be the roots given by (4.3). Thus r̄i = sβi

. We say that the sequence (r1, . . . , rl) is the
λ-chain of reflections and the sequence (β1, . . . , βl) is the λ-chain of roots associated with the decomposition
v−λ = si1 · · · sil

.

Equivalently, a sequence of roots (β1, . . . , βl) is a λ-chain of roots if there is an alcove path A0
−β1
−→

· · ·
−βl
−→ Al. By Lemma 4.3, the elements of the corresponding λ-chain of reflections are the affine reflections

rj with respect to the common walls of the alcoves Aj−1 and Aj , for j = 1, . . . , l.
Finally, we say that a λ-chain is reduced if it is associated with a reduced decomposition of v−λ.

5. The KT -Chevalley Formula

We can formulate our main result as follows.

Theorem 5.1. Fix any weight λ. Let (r1, . . . , rl) and (β1, . . . , βl) be the λ-chain of reflections and the
λ-chain of roots associated with a decomposition v−λ = si1 · · · sil

∈ Waff , which may or may not be reduced.
Let u, w ∈ W , and µ ∈ Λ. Then the KT -Chevalley coefficient cλ,µ

u,w, i.e., the coefficient of xµ [Ow] in the
expansion of the product [Lλ] · [Ou], can be expressed as follows:

(5.1) cλ,µ
u,w =

∑

J

(−1)n(J) ;

the summation ranges over all subsets J = {j1 < · · · < js} of {1, . . . , l} satisfying the following conditions:

(a) u m u r̄j1 m u r̄j1 r̄j2 m · · · m u r̄j1 r̄j2 · · · r̄js
= w is a saturated decreasing chain from u to w in the

Bruhat order on the Weyl group W ;
(b) −µ = u rj1 · · · rjs

(−λ),

where n(J) is the number of negative roots in {βj1 , . . . , βjs
}.

If λ is a dominant weight, then cλ,µ
u,w equals the number of subsets J ⊆ {1, . . . , l} that satisfy conditions

(a) and (b) in Theorem 5.1.
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If λ is an anti-dominant weight, then (−1)`(u)−`(w) cλ,µ
u,w equals the number of subsets J ⊆ {1, . . . , l} that

satisfy conditions (a) and (b) in Theorem 5.1.

In the next section, we reformulate this Theorem in a compact form and then prove it, using a certain
R-matrix. In Sections 7 and 8, we give several examples that illustrate this Theorem.

Given a dominant weight λ, let Vλ denote the finite dimensional irreducible representation of the Lie
group G with highest weight λ. For λ ∈ Λ+ and w ∈ W , the Demazure module Vλ,w is the B-module
that is dual to the space of global sections of the line bundle Lλ on the Schubert variety Xw, i.e., Vλ,w =
H0(Xw,Lλ)∗. The formal characters of these modules, called Demazure characters, are given by ch(Vλ,w) :=
∑

µ∈Λ mλ,w(µ) eµ ∈ Z[Λ], where mλ,w(µ) is the multiplicity of the weight µ in Vλ,w . The characters of

irreducible representations of G are special cases, namely ch(Vλ) = ch(Vλ,w◦). The Demazure characters are
given by Demazure’s character formula [Dem].

Lemma 5.2. (cf. Lakshmibai-Littelmann [LL], Littelmann-Seshadri [LS2].) For any λ ∈ Λ+ and
u ∈ W , the Demazure character ch(Vλ,u) can be expressed in terms of the KT -Chevalley coefficients as
follows: ch(Vλ,u) =

∑

w∈W, µ∈Λ cλ,µ
u,w eµ.

Theorem 5.1 implies the following combinatorial model for the Demazure characters ch(Vλ,u) and, in
particular, for the characters ch(Vλ) of the irreducible representations Vλ of the Lie group G.

Corollary 5.3. Let λ be a dominant weight, let u ∈ W , and let v−λ = si1 · · · sil
∈ Waff be a reduced

decomposition of v−λ. Let (r1, . . . , rl) be the corresponding λ-chain of reflections. Then the Demazure
character ch(Vλ,u) is equal to the sum

ch(Vλ,u) =
∑

J

e−u rj1
···rjs (−λ)

over all subsets J = {j1 < · · · js} ⊂ {1, . . . , l} such that

u m u r̄j1 m u r̄j1 r̄j2 m · · ·m u r̄j1 r̄j2 · · · r̄js

is a saturated decreasing chain in the Bruhat order on the Weyl group W .

We can slightly simplify the formula for the characters ch(Vλ) = ch(Vλ,w◦) of the irreducible represen-
tations of G, as follows.

Corollary 5.4. Consider the setup in Corollary 5.3. We have

ch(Vλ) =
∑

J

e−rj1
···rjs (−λ) ,

where the summation is over all subsets J = {j1 < · · · js} ⊂ {1, . . . , l} such that

1 l r̄j1 l r̄j1 r̄j2 l · · ·l r̄j1 r̄j2 · · · r̄js

is a saturated increasing chain in the Bruhat order on the Weyl group W .

In order to make our formula completely combinatorial, we present one particular choice for the λ-chain
of reflections, which is illustrated by Example 8.1. The construction depends on the choice of a total order
on the simple roots in Φ. For simplicity, assume that λ is dominant. The set R = Rλ ⊂ Waff of affine
reflections with respect to the affine hyperplanes Hα,k that separate the alcoves A◦ and A−λ is given by

R = Rλ =
⋃

α∈Φ+

{sα,k : 0 ≥ k > −(λ, α∨)}.

Let us choose a path π : [0, 1] → h∗
R

that connects the alcoves A◦ and A−λ; then let us totally order the
set R according to the order in which the path π crosses the hyperplanes Hα,k. If the path is given by
π = πε : t 7→ −t λ + ε ω1 + ε2ω2 + · · · + εrωr, where ε is a sufficiently small positive constant, then the
corresponding total order on R can be described as follows. Let h : R → Rr+1 be the map given by

(5.2) h : sα,k 7→ (λ, α∨)−1 (−k, (ω1, α
∨), . . . , (ωr, α

∨)),
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for any sα,k ∈ R with α ∈ Φ+. The map h is injective.

Proposition 5.5. Let R = {r1 < r2 < · · · < rl} be the total order on the set R such that h(r1) <
h(r2) < · · · < h(rl) in the lexicographic order on R

r+1. Then (r1, . . . , rl) is a reduced λ-chain of reflections.

6. KT -Chevalley Formula: Operator Notation

Let us extend the ring of coefficients in KT (G/B), as follows. Let Λ/h∨ := {λ/h∨ : λ ∈ Λ}, where

h∨ = (ρ, θ∨) + 1 is the dual Coxeter number. Let Z[X̃ ] be the group algebra of Λ/h∨ with formal exponents

xλ/h∨ , for λ ∈ Λ. And let K̃T (G/B) := KT (G/B) ⊗Z[X] Z[X̃ ]. For α ∈ Φ+, define the Z[X̃]-linear Bruhat

operators Bα acting on K̃T (G/B) by

(6.1) Bα : [Ow] 7−→

{

[Owsα
] if `(wsα) = `(w)− 1,

0 otherwise.

Also define Bα := −B−α, for negative roots α. The operators Bα move Weyl group elements one step down

in the Bruhat order. For a weight λ, define the Z[X̃ ]-linear operators Xλ acting on K̃T (G/B) by

(6.2) Xλ : [Ow] 7→ xw(λ/h∨)[Ow].

Let us define operators Rα by

(6.3) Rα := Xα + X(ρ,α∨) α Bα = Xρ (Xα + Bα) X−ρ, for α ∈ Φ.

The operators Rα generalize the operators considered in [BFP]. The following claim can be proved along
the lines of [BFP].

Theorem 6.1. The family of operators Rα, α ∈ Φ, satisfies the Yang-Baxter equation (in the sense
of Cherednik [Cher, Definition 2.1a]). In other words, R−α = (Rα)−1; the operators Rα and Rβ commute
whenever (α, β) = 0; if α and β generate a root subsystem of type A2, then

RαRα+βRβ = RβRα+βRα ;

finally, there are similar relations for the other rank 2 root subsystems.

For λ ∈ Λ, let us define the operator R[λ] acting on K̃T (G/B) as

(6.4) R[λ] = Rβl
Rβl−1

· · ·Rβ2
Rβ1

,

where (β1, . . . , βl) is a λ-chain of roots and the Rα are given by (6.3). Theorem 6.1 implies that the operator
R[λ] depends only on the weight λ and not on the choice of a λ-chain. The operator R[λ] preserves the space
KT (G/B).

We can formulate the equivariant K-theory Chevalley formula using the operator notation, as follows.

Theorem 6.2. For any weight λ and any u ∈ W , we have

[Lλ] · [Ou] = R[λ]([Ou]),

i.e., the operator R[λ] acts on the space KT (G/B) as the operator of multiplication by the class [Lλ] of a line
bundle.

If λ is a dominant weight, then all roots in a reduced λ-chain are positive; thus the operator R[λ] expands
as a positive expression in the Bruhat operators Bα, α ∈ Φ+, and the operators Xµ. In this case, Theorem 6.2
gives a positive formula for [Lλ] · [Ou].
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7. Examples for Type A

Suppose that G = SLn. Then the root system Φ is of type An−1 and the Weyl group W is the symmetric
group Sn. We can identify the space h∗

R
with the quotient space V := Rn/R(1, . . . , 1), where R(1, . . . , 1)

denotes the subspace in R
n spanned by the vector (1, . . . , 1). The action of the symmetric group Sn on V is

obtained from the (left) Sn-action on Rn by permutation of coordinates. Let ε1, . . . , εn ∈ V be the images of
the coordinate vectors in Rn. The root system Φ can be represented as Φ = {αij := εi−εj : i 6= j, 1 ≤ i, j ≤
n}. The simple roots are αi = αi i+1, for i = 1, . . . , n− 1. The longest coroot is θ∨ = α∨1n. The fundamental
weights are ωi = ε1 + · · · + εi, for i = 1, . . . , n − 1. We have ρ = nε1 + (n − 1)ε2 + · · · + 2εn−1 + εn. The
dual Coxeter number is h∨ = (ρ, θ∨)+1 = n. The weight lattice is Λ = Zn/Z(1, . . . , 1). We use the notation
[λ1, . . . , λn] for a weight, as the coset of (λ1, . . . , λn) in Zn.

Let Z ⊂ Λ be the set Z of central points of alcoves scaled by the factor h∨ = n. The fundamental alcove

corresponds to the point ρ in Z. Two alcoves are adjacent A
α
−→ B, α ∈ Φ, if and only if the corresponding

elements of Z are related by ζB − ζA = α. In this case, we write ζA
α
−→ ζB . Thus, we have the structure of

a directed graph with labeled edges on the set Z. Alcove paths correspond to paths in this graph. The set
Z can be explicitly described as

Z = {[µ1, . . . , µn] ∈ Λ : µ1, . . . , µn have distinct residues modulo n}.

For an element µ = [µ1, . . . , µn] ∈ Z, there exists an edge µ
αij

−→ (µ + αij) if and only if µi + 1 ≡ µj mod n.
Given a weight λ, the corresponding λ-chains are in one-to-one correspondence with directed paths in the
graph Z from ρ to ρ− nλ.

Example 7.1. Suppose that n = 4 and λ = ω2 = [1, 1, 0, 0]. The directed path

[4, 3, 2, 1]
−α23−→ [4, 2, 3, 1]

−α13−→ [3, 2, 4, 1]
−α24−→ [3, 1, 4, 2]

−α14−→ [2, 1, 4, 3].

from ρ = [4, 3, 2, 1] to ρ− n ω2 = [0,−1, 2, 1] = [2, 1, 4, 3] produces the ω2-chain (α23, α13, α24, α14).

Example 7.2. For an arbitrary n, we have ω1 = ε1 = [1, 0, . . . , 0]. The path

[n, n− 1, . . . , 1]
−α12−→ [n− 1, n, n− 2, . . . , 1]

−α13−→ [n− 2, n, n− 1, n− 3, . . . , 1]

−α14−→ [n− 3, n, n− 1, n− 2, n− 4, . . . , 1]
−α15−→ · · ·

−α1n−→ [1, n, n− 1, . . . , 2].

from ρ to ρ− n ω1 gives the ω1-chain (α12, α13, α14, . . . , α1n). In general, for any k = 1, . . . , n, we have the
εk-chain

(7.1) (αk k+1, αk k+2, . . . , αk n, αk 1, αk 2, . . . , αk k−1)

given by the corresponding path from ρ to ρ− nεk.

Recall that v−λ is the unique element of Waff such that v−λ(A◦) = A−λ. Equivalently, we can define
v−λ in terms of central points of alcoves by the condition v−λ(ρ/h∨) = ρ/h∨ − λ.

Lemma 7.3. Suppose that Φ is of type An−1. Then, for k = 1, . . . , n− 1, the affine Weyl group element
v−ωk

belongs, in fact, to Sn ⊂ Waff . This permutation is given by

v−ωk
=

(

1 2 · · · n− k n− k + 1 · · · n
k + 1 k + 2 · · · n 1 · · · k

)

∈ Sn ⊂ Waff .

Let Rij := Rαij
. Theorem 6.2 implies the following statement.

Corollary 7.4. For k = 1, . . . , n, the operator of multiplication by [Lεk
] in the Grothendieck ring

KT (SLn/B) is given by

R[εk] = Rk k−1Rk k−2 · · ·Rk 1Rk nRk n−1 · · ·Rk k+1.
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For k = 1, . . . , n − 1, the operator of multiplication by the line bundle [Lωk
] corresponding to the k-th

fundamental weight ωk is given by

(7.2) R[ωk] = R[ε1] · · ·R[εk] =

−→
∏

i=1,...,k

←−
∏

j=k+1,...,n

Rij .

The combinatorial formula for multiplication by [Lωk
]x=1 in the Grothendieck ring K(SLn/B) that

follows from formula (7.2) was originally found in [Len].

Example 7.5. For n = 3, Corollary 7.4 says that

R[ω1] = R13 R12 and R[ω2] = R13 R23.

Example 7.6. Suppose that n = 3, λ = ω1, and u = w◦ = s1s2s1 ∈ W . Let us calculate the product
[Lλ] · [Ou] in KT (SLn/B) using Theorem 5.1. The ω1-chain (β1, β2) = (α12, α13) is associated with the
reduced decomposition s1s2 = v−ω1

. The corresponding ω1-chain of reflections is (r1, r2) = (s1, s1s2s1) =
(sα12,0, sα13,0). Three out of four subsequences in (β1, β2) correspond to decreasing chains from w◦: (empty
subsequence), (α12), and (α12, α13). Thus we have

[Lω1
] · [Ow◦ ] = x−w◦(−ω1)[Ow◦ ] + x−w◦r1(−ω1)[Os1s2

] + x−w◦r1r2(−ω1)[Os2
].

We can write this expression as

[L[1,0,0]] · [Ow◦ ] = x[0,0,1][Ow◦ ] + x[0,1,0][Os1s2
] + x[1,0,0][Os2

].

This gives the character of the irreducible representation Vω1
:

ch(Vω1
) = e[0,0,1] + e[0,1,0] + e[1,0,0].

Let us give a less trivial example.

Example 7.7. Suppose n = 3 and λ = 2 ω1 + ω2 = [3, 1, 0]. The path

[3, 2, 1]
−α12−→ [2, 3, 1]

−α13−→ [1, 3, 2]
−α23−→ [1, 2, 3]

−α13−→ [0, 2, 4]
−α12−→ [−1, 3, 4]

−α13−→ [−2, 3, 5]

from ρ = [3, 2, 1] to ρ− nλ = [−2, 3, 5] gives the λ-chain

(β1, . . . , β6) = (α12, α13, α23, α13, α12, α13),

which is associated with the reduced decomposition v−λ = s1s2s1s0s1s2 in the affine Weyl group. We have

R[λ] = Rβ6
· · ·Rβ1

= R13 R12 R13 R23 R13 R12 = R[ω1] R[ω2] R[ω1].

The corresponding λ-chain of reflections is

(r1, . . . , r6) = (sα12,0, sα13,0, sα23,0, sα13,−1, sα12,−1, sα13,−2).

Theorem 5.1 says that that the coefficient of [Ow] in the product [Lλ] · [Ou] in KT (SLn/B) is given by the
sum over subsequences in the λ-chain (β1, . . . , β6) that correspond to saturated decreasing chains um · · ·mw
in the Bruhat order on W = S3.

Suppose that u = s2s1. There are five saturated chains in Bruhat order descending from u: (empty
chain), (u m usα12

= s2), (u m usα13
= s1), (u m usα12

m usα12
sα23

= 1), (u m usα13
m usα13

sα12
= 1). Thus

the expansion of [Lλ] · [Ou] is given by the sum over the following subsequences in the λ-chain (β1, . . . , β6):

(empty subsequence), (α12), (α13), (α12, α23), (α13, α12).
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The sequence (β1, . . . , β6) contains one empty subsequence, two subsequences of the form (α12), three subse-
quences of the form (α13), one subsequence of the form (α12, α23), and two subsequence of the form (α13, α12).
Hence, we have

[Lλ] · [Os2s1
] = x−u(−λ) [Os2s1

] +
(

x−ur1(−λ) + x−ur5(−λ)
)

[Os2
] +

+
(

x−ur2(−λ) + x−ur4(−λ) + x−ur6(−λ)
)

[Os1
] +

+ x−ur1r3(−λ) [O1] +
(

x−ur2r5(−λ) + x−ur4r5(−λ)
)

[O1].

We can explicitly write this expression as

[L[3,1,0]] · [Os2s1
] = x[1,0,3] [Os2s1

] +
(

x[3,0,1] + x[2,0,2]
)

[Os2
] +

+
(

x[1,3,0] + x[1,2,1] + x[1,1,2]
)

[Os1
] + x[3,1,0] [O1] +

(

x[2,2,0] + x[2,1,1]
)

[O1].

The Demazure character ch(Vλ,u) is obtained from the right-hand side of this expression by replacing
each term xµ[Ow] with eµ:

ch(V[3,1,0],s2s1
) =

e[1,0,3] + e[3,0,1] + e[2,0,2] + e[1,3,0] + e[1,2,1] + e[1,1,2] + e[3,1,0] + e[2,2,0] + e[2,1,1].

8. Examples for Other Types

For root systems of other types, we can use the explicit construction of the λ-chain of reflections
(r1, . . . , rl) given by Proposition 5.5.

Example 8.1. Suppose that the root system Φ is of type G2. Let us find λ-chains for λ = ω1 and λ = ω2

using Proposition 5.5. The positive roots are γ1 = α1, γ2 = 3α1 + α2, γ3 = 2α1 + α2, γ4 = 3α1 + 2α2, γ5 =
α1 + α2, γ6 = α2. The corresponding coroots are γ∨1 = α∨1 , γ∨2 = α∨1 + α∨2 , γ∨3 = 2α∨1 + 3α∨2 , γ∨4 =
α∨1 + 2α∨2 , γ∨5 = α∨1 + 3α∨2 , γ∨6 = α∨2 .

Suppose that λ = ω1. The set Rω1
of affine reflections with respect to the hyperplanes separating the

alcoves A◦ and A−ω1
is

Rω1
= {sγ1,0, sγ2,0, sγ3,0, sγ3,−1, sγ4,0, sγ5,0}.

The map h : Rω1
→ R

r+1 given by (5.2) sends these affine reflections to the vectors

(0, 1, 0), (0, 1, 1), (0, 1, 3
2 ), ( 1

2 , 1, 3
2 ), (0, 1, 2), (0, 1, 3),

respectively. The lexicographic order on vectors in R3 induces the following total order on the set Rω1
:

sγ1,0 < sγ2,0 < sγ3,0 < sγ4,0 < sγ5,0 < sγ3,−1 .

Suppose now that λ = ω2. The set Rω2
of affine reflections with respect to the hyperplanes separating

A◦ and A−ω2
is

Rω2
= {sγ2,0, sγ3,0, sγ3,−1, sγ3,−2, sγ4,0, sγ4,−1, sγ5,0, sγ5,−1, sγ5,−2, sγ6,0}.

The map h : Rω2
→ Rr+1 sends these affine reflections to the vectors

(0, 1, 1), (0, 2
3 , 1), ( 1

3 , 2
3 , 1), ( 2

3 , 2
3 , 1), (0, 1

2 , 1), ( 1
2 , 1

2 , 1),

(0, 1
3 , 1), ( 1

3 , 1
3 , 1), ( 2

3 , 1
3 , 1), (0, 0, 1),

respectively. The lexicographic order on vectors in R
3 induces the following total order on Rω2

:

sγ6,0 < sγ5,0 < sγ4,0 < sγ3,0 < sγ2,0 < sγ5,−1 < sγ3,−1 < sγ4,−1 < sγ5,−2 < sγ3,−2 .
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The total orders on Rω1
and Rω2

correspond to the ω1-chain (γ1, γ2, γ3, γ4, γ5, γ3) and the ω2-chain
(γ6, γ5, γ4, γ3, γ2, γ5, γ3, γ4, γ5, γ3). Thus the operators of multiplication by the classes [Lω1

] and [Lω2
] in

KT (G/B) are given by

R[ω1] = Rγ3
Rγ5

Rγ4
Rγ3

Rγ2
Rγ1

,

R[ω2] = Rγ3
Rγ5

Rγ4
Rγ3

Rγ5
Rγ2

Rγ3
Rγ4

Rγ5
Rγ6

.

By Lemma 7.3, we have v−ωk
∈ W for all fundamental weights ωk in type A. In fact, similar a

phenomenon occurs for minuscule fundamental weights in other types as well. The last two examples
concern minuscule weights in types B and C. Recall that the element v−λ is defined by the condition
v−λ(ρ/h∨) = ρ/h∨ − λ.

Example 8.2. Suppose that Φ is a root system of type Cr. This can be embedded into Rr as follows:
Φ = {±εi ± εj , ±2εi : i 6= j}, where ε1, . . . , εr are the coordinate vectors in R

r. The simple roots are
α1 = ε1 − ε2, α2 = ε2 − ε3, . . . αr−1 = εr−1 − εr, αr = 2εr. The Weyl group W is the semidirect product
of Sr and (Z/2Z)r. It acts on Rr by permuting the coordinates and changing their signs. The fundamental
weights are ωk = ε1 + · · · + εk, k = 1, . . . , r; and ρ = (r, . . . , 1) ∈ Rr. The dual Coxeter number is
h∨ = (ρ, θ∨) + 1 = 2r.

Suppose that λ = ω1. Then ρ− h∨ω1 = (−r, r− 1, r− 2, . . . , 1) ∈ Rr. This weight is obtained from ρ by
applying the Weyl group element s2ε1

that changes the sign of the first coordinate. Thus v−ω1
= s2ε1

∈ W ⊂
Waff . The only reduced decomposition of this element is v−ω1

= s1 · · · sr−1 sr sr−1 · · · s1, so `(v−ω1
) = 2r−1.

This reduced decomposition corresponds to the ω1-chain

(α1, s1(α2), s1s2(α3), . . . , s1 . . . sr−1(αr), . . . , s1 . . . sr . . . s2(α1)) =

(ε1 − ε2, ε1 − ε3, · · · , ε1 − εr, 2ε1, ε1 + εr, · · · , ε1 + ε3, ε1 + ε2),

cf. Definition 4.4. The operator R[ω1] is given by

R[ω1] = Rε1+ε2
Rε1+ε3

· · ·Rε1+εr
R2ε1

Rε1−εr
· · ·Rε1−ε3

Rε1−ε2
.

Example 8.3. Suppose that the root system Φ is of type Br. This can be embedded into Rr as follows:
Φ = {±εi ± εj , ±εi : i 6= j}, where ε1, . . . , εr are the coordinate vectors in Rr. The simple roots are
α1 = ε1 − ε2, α2 = ε2 − ε3, . . . αr−1 = εr−1 − εr, αr = εr. The Weyl group W and its action on Rr are the
same as in type Cr. The fundamental weights are ωk = ε1+· · ·+εk, k = 1, . . . , r−1, and ωr = 1

2 (ε1+· · ·+εr);

on the other hand, ρ = (r − 1
2 , . . . , 1− 1

2 ) ∈ Rr. The dual Coxeter number is h∨ = (ρ, θ∨) + 1 = 2r.

Suppose that λ = ωr is the last fundamental weight. Then ρ−h∨ωr = (− 1
2 ,−1− 1

2 ,−2− 1
2 , . . . ,−r+ 1

2 ) ∈
Rr. This weight is obtained from ρ by applying the Weyl group element v−ωr

∈ W ⊂ Waff that reverses the
order of all coordinates and changes their signs. The element v−ωr

∈ W has length `(v−ωr
) = r(r + 1)/2.

One of the reduced decompositions for this element is given by

v−ωr
= (sr)(sr−1 sr)(sr−2 sr−1 sr) · · · (s2 · · · sr)(s1 · · · sr).

The associated ωr-chain is (αr , sr(αr−1), srsr−1(αr), srsr−1sr(αr−2), . . . ). We can explicitly find the roots
in this ωr-chain and write the operator R[ωr] as

R[ωr] = (Rε1
Rε1+ε2

Rε1+ε3
· · ·Rε1+εr

)(Rε2
Rε2+ε3

Rε2+ε4
· · ·Rε2+εr

) · · ·

· · · (Rεr−2
Rεr−2+εr−1

Rεr−2+εr
)(Rεr−1

Rεr−1+εr
)(Rεr

).
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