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Two actions of the Hecke algebra of type A on the corresponding polynomial
ring are studied. Both are deformations of the natural action of the symmetric
group on polynomials, and keep symmetric functions invariant. We give an explicit
description of these actions, and deduce a combinatorial formula for the resulting
graded characters on the coinvariant algebra. � 2000 Academic Press

1. INTRODUCTION

1.1. The symmetric group S acts on the polynomial ring P �n n
� � Ž .F x , . . . , x where F is a field of characteristic zero by permuting1 n

variables. Let I be the ideal of P generated by the symmetric i.e.,n n
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Ž .S -invariant polynomials without a constant term. The coin�ariant algebran
of type A is the quotient P �I . Schubert polynomials, constructed in then n

� �seminal papers BGG, De , form a distinguished basis for the coinvariant
algebra. These polynomials correspond to Schubert cells in the corre-
sponding flag variety.

1.2. In this paper we present two deformations of this action. For these
Ž .deformations we can take F � C q , the field of rational functions in an

indeterminate q. Most of the results actually hold when F is replaced by
� �the ring Z q of polynomials in q with integer coefficients.

Ž .Let T , . . . , T be the standard generators of the Hecke algebra HH q1 n�1 n
of type A; for definitions see Section 2.1 below.

Ž . Ž .The first action � : HH q � Hom P , P is defined using q-commuta-1 n F n n
tors

� T � � X � qX � 1 � i � n , 1.1Ž . Ž . Ž .1 i i i i i

where

1
� � 1 � sŽ .i ix � xi i�1

Ž .is the divided difference operator see Section 2.2 , and X denotesi
� � Žmultiplication by x . This action belongs to a family introduced in LS seei

. � �Section 7.1 below . For a geometric interpretation see DKLLST . In
� �DKLLST, Sect. 1 such families of operators are attributed to Hirzebruch
� �Hr .

The second action is naturally defined on monomials by the formula

	 � �qx x m , if � � � ,i i�1

� � � �� � 
 1 � q x x m � x x m , if � � � ,� T x x m � Ž .Ž . Ž . i i�1 i i�12 i i i�1
� ��x x m , if � � � .i i�1

1.2Ž .

Here m is a monomial involving neither x nor x .i i�1
Ž .For a closely related action defined in the context of quantum groups

� �see Ji .

Claim. The ideal I is invariant under both actions. The resultingn
graded characters on the coinvariant algebra have a common combinato-
rial formula.

This shows, in particular, that � and � lead to equivalent representa-1 2
Ž .tions of HH q on the coinvariant algebra. For q � 1 they both reduce ton

the natural S action.n
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1.3. Since the ideal I is invariant under both � and � , the coinvari-n 1 2
ant algebra P �I carries appropriate actions � and � . Let � k and � k˜ ˜n n 1 2 1 2
be the characters of these representations on the k th homogeneous
component of P �I . We shall give an explicit formula for these charac-n n
ters, using the following combinatorial function.

For any permutation w � S , definen

m	 �q , if there exists a unique 0 � m � n so thatŽ .
m w �Ž . w 1 �����w m�1 �w m�2 �����w n ,q Ž . Ž . Ž . Ž .�
0, otherwise.

1.3Ž .

Ž .Let � � � , . . . , � be a partition of n, and let S � S � ��� � S be1 t � � �1 t

the corresponding Young subgroup of S . For any permutation w � Sn n
Ž . Ž .write w � r � w � ��� � w , where w � S 1 � i � t and r is a repre-1 t i � i

sentative of minimal length for the left coset wS in S . Define� n

t
�weight w � m w . 1.4Ž . Ž . Ž .Łq q i

i�1

THEOREM. For all k  0 and � � n,

� k T � � k T � weight � w ,Ž .Ž . Ž . Ý1 � 2 � q
� Ž . 4w�S : l w �kn

where T � T T ��� T T ��� ��� T is the subproduct of� 1 2 � �1 � �1 � � � � � �� �11 1 1 t

T T ��� T omitting T for all 1 � i � t.1 2 n�1 � � � � � ��1 i

The proof relies on an explicit description of the action with respect to
the Schubert basis of the coinvariant algebra. See Theorems 4.1 and 6.5
below.

Remark. This character formula is a natural q-analogue of a weight
� �formula for S presented in Ro2 . A formally similar result appears also inn

Kazhdan�Lusztig theory. Kazhdan�Lusztig characters may be represented
as sums of exactly the same weights, but over different summation sets
� �Ro1, Corollary 4; Ra2 .

1.4. The rest of this paper is organized as follows. Preliminaries and
necessary background are given in Section 2. In Section 3 we introduce
q-commutators and study their representation matrices. The character
formula for q-commutators is proved in Section 4. Natural randomized
operators are introduced in Section 5. In Section 6 we show that the
representations induced by the two different actions are equivalent. Sec-
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tion 7 concludes the paper with remarks regarding related families of
operators, connections with Kazhdan�Lusztig theory, and open problems.

2. PRELIMINARIES

2.1. The Hecke Algebra of Type A

The symmetric group S is generated by n � 1 involutions s , s , . . . ,n 1 2
s satisfying the Moore�Coxeter relationsn�1

s s s � s s s 1 � i � n � 1 2.1Ž . Ž .i i�1 i i�1 i i�1

and

� �s s � s s if i � j � 1. 2.2Ž .i j j i

These involutions are known as the Coxeter generators of S .n
All reduced expressions of a permutation w � S with respect to thesen

Ž .generators have the same length, denoted by l w .
Ž . Ž .The Hecke algebra HH q of type A is the algebra over F � C qn

generated by n � 1 generators T , . . . , T , satisfying the Moore�Coxeter1 n�1
Ž . Ž .relations 2.1 and 2.2 as well as the following ‘‘deformed involution’’

relation:

T 2 � 1 � q T � q 1 � i � n . 2.3Ž . Ž . Ž .i i

It should be noted that the last relation is slightly non-standard; this is
done in order to get more elegant q-analogues. In order to shift to the
standard version, one should replace each T by �T .i i

Let w be a permutation in S and let s ��� s be a reduced expres-n i i1 lŽw .

sion for w. It follows from the above relations that T � T ��� T isw i i1 lŽw .
� 4independent of the choice of reduced expression; the set T � w � Sw n

Ž .forms a linear basis for HH q .n
Ž . Ž .Let � � � , . . . , � be a partition of n. Define T � HH q to be the1 t � n

product

T � T T ��� T T T ��� T T ��� ��� T .� 1 2 � �1 � �1 � �2 � �� �1 � �� �1 � � � � � � �11 1 1 1 2 1 2 1 t

ŽThis is the subproduct of the product T T ��� T of all generators in1 2 n�1
.the usual order , obtained by omitting T for all 1 � i � t. These� � � � � ��1 i

Ž .elements play an important role in the character theory of HH q . Forn
q � 1, the elements T are representatives of all conjugacy classes in S . It� n
follows that, for q � 1, a character is determined by its values at these
elements. This is also the case for arbitrary q, as the following theorem
shows.
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� �THEOREM 2.1 Ra1, Theorem 5.1 . For each w � S there exists an
linear combination

C � a T � HH q ,Ž .Ýw w , � � n
�

� �with a � Z q , such thatw , �

� T � � CŽ . Ž .w w

Ž .for all characters � of the Hecke algebra HH q .n

Ž .Let � � � , . . . , � be a partition of n. Each permutation w � S has1 t n
�Ž . Ž . Ž .an associated weight, weight w , as defined in 1.3 , 1.4 . The irreducibleq

Ž .characters of HH q are indexed by the partitions of n. These charactersn
may be represented as weighted sums over Knuth equivalence classes.

� �THEOREM 2.2 Ro1, Corollary 4 . Let CC be a Knuth equi�alence class of
shape 	. Then

� 	 T � weight � w ,Ž .Ž . Ý� q
w�CC

	 Ž .where � is the irreducible character of HH q corresponding to the shape 	.n

2.2. Schubert Polynomials and the Coin�ariant Algebra

2.2.1. Basic Actions on the Polynomial Ring

Let x , x , . . . , x be independent variables, and let P be the polyno-1 2 n n
� �mial ring F x , x , . . . , x . The symmetric group S acts on P by permut-1 2 n n n

� �ing the variables x . Let 
 � 
 x , x , . . . , x be the subring of symmet-i n 1 2 n
Ž .ric functions i.e., polynomials which are invariant under the action of S .n
Ž .Denote by 
 i the ring of all polynomials which are invariant under then

Ž .action of s for a fixed i, 1 � i � n. Clearly, f � 
 i if and only if f isi n
Ž .symmetric in the variables x and x . We call the polynomials in 
 ii i�1 n

i-symmetric polynomials.
For 1 � i � n define a divided difference operator � : P � P byi n n

�1
� � x � x 1 � s .Ž . Ž .i i i�1 i

If f � P is a homogeneous polynomial of degree d, which is not i-sym-n
Ž .metric, then � f is homogeneous of degree d � 1. For i-symmetrici

Ž .polynomials � f � 0.i
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� Ž .�The operators � satisfy the nil-Coxeter relations Ma, 2.1i

� 2 � 0 1 � i � n , 2.4Ž . Ž .i

� � � � � � � 1 � i � n � 1 , 2.5Ž . Ž .i i�1 i i�1 i i�1

� �� � � � � if i � j � 1. 2.6Ž .i j j i

Let X be the operator on P corresponding to multiplication by x .i n i
Clearly, X increases degree by 1.i

The algebra generated by the operators � , 1 � i � n, and X , 1 � i � ni i
� �was studied in De, BGG . The generators satisfy the following commuta-

tion relations:

� �� X � X � if i � j � 1, 2.7Ž .i j j i

� X � 1 � X � 1 � i � n , 2.8Ž . Ž .i i i�1 i

X � � 1 � � X 1 � i � n , 2.9Ž . Ž .i i i i�1

2.2.2. Schubert Polynomials

Ž .For any sequence a � a , . . . , a of positive integers less than n,1 k
Ž . Ž .define � � � ��� � . It follows from the relations 2.5 , 2.6 that if a, ba a a1 k

are two reduced expressions for the same permutation w � S thenn
� � � . We can therefore use the notation � for w � S , and ina b w n
particular � � � for 1 � i � n.s ii

The relation � 2 � 0 implies that for any w � S and any 1 � i � ni n

� , if l s w � l w ,Ž . Ž .s w ii
� � � 2.10Ž .i w ½ 0, if l s w � l w .Ž . Ž .i

For each w � S we define the Schubert polynomial � byn w

� � � �1 x n�1 x n�2 ��� x ,Ž .w w w 1 2 n�10

where w is the longest element in S .0 n
Ž .By definition, � is a homogeneous polynomial of degree l w .w

Ž .It follows from 2.10 that

� , if l ws � l w ,Ž . Ž .w s ii
� � � 2.11Ž . Ž .i w ½ 0, if l ws � l w .Ž . Ž .i
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Denote � by � . For any 1 � i � n,s ii

� � x � ��� �x . 2.12Ž .i 1 i

� Ž .�See Ma, 4.4 . The following is an important variant of Monk’s formula.

� Ž .�MONK’S FORMULA Ma, 4.11 . Let 1 � i � n and w � S . Thenn

� � � � ,Ýi w w t
t

where the sum extends o�er all transitions t � t interchanging j and k, withjk
Ž . Ž .1 � j � i � k � n and l wt � l w � 1.

The description of the action of the operator X on Schubert polynomi-i
Ž .als follows from Monk’s formula and 2.12 ,

X � � � � � � � � � �Ž . Ž . Ý Ýi w i i�1 w w t w tjk jk
j�i�k j�i�k

� � � � , 2.13Ž .Ý Ýw t w tjk jk
j�i�k j�i�k

Ž .where all summations are over the transpositions t � t satisfying l wt �jk
Ž .l w � 1, with j and k in the indicated ranges.

2.2.3. The Coin�ariant Algebra

� �Recall that 
 � 
 x , . . . , x is the subring of P consisting of sym-n 1 n n
metric functions, and let I be the ideal of P generated by symmetricn n
functions without a constant term. The quotient P �I is called then n
coin�ariant algebra of S . S acts naturally on this algebra. The resultingn n
representation is isomorphic to the regular representation of the symmet-

� �ric group. See, e.g., Hu, Sect. 3.6; Hi, Sect. II.3 .
nk Ž Ž ..Let R 0 � k � be the k th homogeneous component of the2

Žn
2 . k k � �coinvariant algebra: P �I � � R . Each R is an F S -module; letn n k�0 n

k � 4� be the corresponding character. The set � � w � S of Schubertw n
� Ž . 4polynomials forms a basis for P �I , and the set � � l w � k forms an n w

basis for Rk.
The action of the simple reflections on Schubert polynomials is de-

�scribed by the following proposition, which is a reformulation of BGG,
Ž .�Theorem 3.14 iii .
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PROPOSITION 2.3. For any simple reflection s and any w � S ,i n

	� , if l ws � l w ,Ž . Ž .w i

�� � Ý � � Ý �w k � i wŽk , i�1, i. k � i wŽk , i , i�1.
s � �Ž .i w �Ý � � Ý � ,k � i�1 wŽk , i , i�1. k � i�1 wŽk , i�1, i.� if l ws � l w ,Ž . Ž .i

Ž . Ž .where k, i, i � 1 , k, i � 1, i are cycles of length 3, and the sums extend
Ž . Ž .o�er those �alues of k in the prescribed ranges for which w k, i, i � 1

Ž Ž ..respecti�ely, w k, i � 1, i has the same length as w.

Note that the signs in this proposition may depend on notational
conventions.

Let � be a partition of n, and let � k be the S -character on Rk asn
above. The following character formula is analogous to Theorem 2.2.

� �THEOREM 2.4 Ro2, Theorem 2 . With the notations of Theorem 2.2,

� k w � weight � w ,Ž . Ž .Ý� 1
Ž .l w �k

�Ž . Ž .where weight w is the weight 1.4 with q � 1, and w is any permutation1 �

of cycle-type �.

The goal of this paper is to define a Hecke algebra action on the
polynomial ring P which produces a q-analogue of Theorem 2.4.n

3. q-COMMUTATORS

� �For 1 � i � n define the q-commutator � , X as follows:i i q

� �� , X � � X � qX � .qi i i i i i

� � � �It should be noted that for q � 1, � , X � s . Let A � � , X .i i 1 i i i i q

Claim 3.1. The operators A , 1 � i � n, satisfy the Hecke algebrai
Ž . Ž .relations 2.1 � 2.3 .

Ž . Ž .Proof. Combine the nil-Coxeter relations 2.4 � 2.6 for the operators
Ž . Ž .� with the commutation relations 2.7 � 2.9 for the operators � and X .i i j

Ž .It follows that the mapping T � A 1 � i � n may be extended to ai i
Ž .representation � of HH q on P :1 n n

� �� T � A � � , X .Ž . q1 i i i i
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Remark. The polynomial action of the Coxeter generators of S isn
multiplicati�e; i.e., for any generator s and any two polynomials f , g � P ,i n

s fg � s f s g . 3.1Ž . Ž . Ž . Ž .i i i

Thus each s acts on P as an algebra automorphism. It follows that if f isi n
Ž . Ž . Ž .i-symmetric see Section 2.2.1 then s fg � fs g . In contrast to that,i i

Ž .the operators A are not multiplicative. Actually, 2.3 implies that thei
eigenvalues of any linear action of a Hecke algebra generator T are 1 andi

Ž . Ž�q, and taking f to be a �q -eigenvector of A , one would get if Ai i
. 2 2were multiplicative that f is a q -eigenvector, which is impossible for

generic q.

Ž .Claim 3.2. For any 1 � i � n, any i-symmetric polynomial f � 
 i ,n
and any polynomial g � P ,n

A f � f 3.2Ž . Ž .i

and

A fg � fA g . 3.3Ž . Ž . Ž .i i

Ž . Ž .Proof. 3.2 is the special case g � 1 of 3.3 . The latter follows from
the fact that for arbitrary polynomials f , g � Pn

� fg � � f g � s f � g .Ž . Ž . Ž . Ž .i i i i

Ž . Ž . Ž .Therefore, if f � 
 i then � fg � f� g , so thatn i i

A fg � � x fg � qx � fg � f � x g � qx � g � fA g .Ž . Ž . Ž . Ž . Ž . Ž .i i i i i i i i i i

It follows that the ideal I of P is invariant under all the operators A ,n n i
Ž .giving rise to a representation � of HH q on the quotient P �I , namely,˜1 n n n

on the coinvariant algebra. Let � k be the character of this representation1
nk Ž Ž ..on the k th homogeneous component R of P �I 0 � k � .2n n

� Ž .Recall from Section 2.2.3 that the set of Schubert polynomials � � l ww
4 k� k forms a basis for R .

The representation � yields a q-analogue of Proposition 2.3.˜1
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THEOREM 3.3. For any 1 � i � n and w � S ,n

	� , if l ws � l w ,Ž . Ž .w i

�q� � qÝ � � Ý �w k � i wŽk , i�1, i. k � i wŽk , i , i�1.
� T � �Ž . Ž .˜1 i w �Ý � � qÝ � ,k � i�1 wŽk , i , i�1. k � i�1 wŽk , i�1, i.� if l ws � l w ,Ž . Ž .i

Ž . Ž .where k, i, i � 1 , k, i � 1, i are cycles of length 3, and the sums extend
Ž . Ž .o�er those �alues of k in the prescribed ranges for which w k, i, i � 1

Ž Ž ..respecti�ely, w k, i � 1, i has the same length as w.

Ž .Proof. By the commutation relation 2.8 ,

A � 1 � X � qX � .Ž .i i�1 i i

Ž . Ž .Applying 2.11 and 2.13 completes the proof.

4. CHARACTERS OF q-COMMUTATORS

In this section we prove the following q-analogue of Theorem 2.4.

THEOREM 4.1. For any partition � � n and k  0,

� k T � weight � w ,Ž .Ž . Ý1 � q
Ž .l w �k

�Ž . Ž .where weight w is defined as in 1.4 , and the subproduct T is defined asq �

in Section 2.1.

First recall that, by Theorem 3.3, for any 1 � i � n and w � Sn

� , if l ws � l w ,Ž . Ž .w i
Ã � �Ž .i w ½ �q� � Ý a q � , if l ws � l w ,Ž . Ž . Ž .w lŽ z s .� lŽ z .� lŽw . w , z z ii

4.1Ž .

˜ Ž . Ž . � �where A � � T , a q � Z q , and the summation is over all z � S˜i 1 i w , z n
Ž . Ž . Ž .with l zs � l z � l w .i

² : ² :Denote by � , � the inner product on P �I defined by � , � �n n � w
� , where � is the Kronecker delta. In order to prove Theorem 4.1 we� w � w
need the following lemma.

Ž . Ž .LEMMA 4.2. Let w � S be a permutation satisfying l ws � l w . Then,n i
for any � � S ,n

˜ ˜ ˜A A � , � � �q A � , � .² :Ž . Ž .¦ ;i � w w � w w
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Ž . Ž . Ž .Proof of Lemma 4.2. It follows from 4.1 that if l ws � l w andi
� � S thenn

�q , if � � w ,
Ã � , � � 4.2² :Ž . Ž .i � w ½ 0, if � � w.

Ž .Substituting 4.2 into

˜ ˜ ˜ ˜² :A A � , � � A A � , � � , �Ž . Ž .¦ ; Ýi � w w i � w � � w¦ ;ž /
�

˜ ˜� A � , � A � , �² :² :Ž . Ž .Ý � w � i � w
�

we obtain the desired conclusion.

Proof of Theorem 4.1. In order to prove Theorem 4.1, it suffices to
Ž .prove that for any partition � � � , . . . , � of n1 t

˜ �A � , � � weight w ,Ž . Ž .¦ ;� w w q

˜ ˜ ˜ ˜Ž .where A � � T is the subproduct of A A ��� A obtained by omit-˜� 1 � 1 2 n�1
˜ting A for all 1 � i � t.� � � � � ��1 i ˜ ˜Assume now that there is an index i such that A and A are factorsi i�1

˜ Ž . Ž . Ž . Ž .of A , l ws � l w , and l ws � l w . Then, by Lemma 4.2,� i i�1

˜ ˜ ˜A A � , � � �q A � , � . 4.3Ž . Ž . Ž .¦ ;¦ ;i�1 � w w � w w

˜ ˜ ˜ ˜On the other hand, by the Hecke algebra relations, A A � A A .i�1 � � i
Hence

˜ ˜ ˜ ˜ ˜A A � , � � A A � , � � A � , � . 4.4Ž . Ž . Ž . Ž .¦ ;¦ ; ¦ ;i�1 � w w � i w w � w w

Ž .The last equality follows from 4.1 .
Ž . Ž .Comparing 4.3 and 4.4 we obtain

˜ ˜�q A � , � � A � , � .Ž . Ž .¦ ; ¦ ;� w w � w w

˜ ˜We conclude that, if there is an index i so that A and A are factors ofi i�1
˜ Ž . Ž . Ž . Ž . Ž .A , l ws � l w , and l ws � l w , then since q is indeterminate� i i�1

Ã � , � � 0.Ž .¦ ;� w w

Note that in this case i, i � 1, and i � 2 belong to the same ‘‘block’’ in the
Ž . Ž . Ž .partition �, and w i � w i � 1 � w i � 2 . Thus indeed

weight � w � 0.Ž .q
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˜It remains to check the case in which there is no index i so that both Ai
˜ ˜ Ž . Ž .and A appear as factors in the product A , with l ws � l w andi�1 � i

Ž . Ž .l ws � l w .i�1
˜ ˜ ˜ ˜ � �In this case, the relation A A � A A for i � j � 1 givesi j j i

˜ ˜ ˜ ˜ ˜A � A ��� A A ��� A ,� i i i i � � � � �� �t1 m m�1 � t1

Ž . Ž . Ž . Ž .where l ws � l w for j � m, and l ws � l w for j � m. Applyingi ij j
Ž .4.1 and Lemma 4.2 iteratively implies

m �Ã � , � � �q � weight w ,Ž . Ž . Ž .¦ ;� w w q

˜ ˜� Ž . Ž . 4where m � � i � l ws � l w and A is a factor of A .i i �

5. RANDOMIZED OPERATORS

In this section we define a natural ‘‘randomized’’ action of the Coxeter
generators on the polynomial ring P , and show that this action satisfiesn
the Hecke algebra relations. This action will be defined initially on
monomials, and then extended by linearity to all polynomials in P .n

Let e � x � x � m, where m � P is a monomial involving neither� , � , m i i�1 n
x nor x , and � , � are nonnegative integers. Note that the lineari i�1

� 4subspace V � span e , e is invariant under the action of s .� , � , m � , � , m � , � , m i
ŽIn this space s acts as a transposition of the two basis elements ifi

.� � � .
Ž .A natural randomization of e is 1 � q e � qe , where� , � , m � , � , m � , � , m

the parameter q may be interpreted as transition probability 0 � q � 1.
ŽMotivated by well-known asymmetric physical processes simulated anneal-

.ing etc. , we define

e , if �  � ,� , � , m�R e � 5.1Ž . Ž .i � , � , m ½ 1 � q e � qe , if � � � ,Ž . � , � , m � , � , m

and extend this randomized action to the whole polynomial ring P byn
� �linearity. See also Ji .

Claim 5.1. The operators R� , 1 � i � n, satisfy the Hecke algebrai
Ž . Ž .relations 2.1 � 2.3 .

Proof. This is easily verified by an explicit calculation of the action on
the monomials e .� , � , m
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� Ž .The operators R lead, therefore, to a representation of HH q on P .i n n
Unfortunately, the symmetric functions are not invariant under this action.
Consider, therefore, the operators whose representation matrices with
respect to the basis of monomials are the transposes of those representing
R� ; i.e., definei

qe , if � � � ,	 � , � , m


 1 � q e � e , if � � � ,Ž .R e � 5.2Ž . Ž .� , � , m � , � , mi � , � , m �e , if � � � .� , � , m

Of course, the operators R , 1 � i � n, also satisfy the Hecke relationsi
Ž . Ž . Ž .2.1 � 2.3 . It follows that the mapping T � R 1 � i � n may be ex-i i

Ž .tended to a representation � of HH q on P :2 n n

� T � R .Ž .2 i i

The following claim is analogous to Claim 3.2.

Ž .Claim 5.2. For any 1 � i � n, any i-symmetric polynomial f � 
 i ,n
and any polynomial g � P ,n

R f � f 5.3Ž . Ž .i

and

R fg � fR g . 5.4Ž . Ž . Ž .i i

Proof. This may be shown by direct calculation.

It follows from the first part of the claim that symmetric functions are
Ž Ž ..pointwise invariant under � HH q . By the second part, the ideal I is2 n n

Ž Ž ..also invariant under � HH q . Thus, � gives rise to a representation �̃2 n 2 2
Ž .of HH q on the coinvariant algebra P �I .n n n

The action of R on monomials is transparent. Section 6 is devoted to ai
better understanding of the action on the coinvariant algebra.

6. PROPERTIES OF THE RANDOMIZED ACTION

The following sequence of assertions concerns the connections between
the operators A and R .i i

Claim 6.1. The operators A and R have the same invariant vectors,i i

ker A � 1 � ker R � 1 � 
 i ,Ž . Ž . Ž .i i n
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Ž . Ž .where 
 i is the set actually, subalgebra of all polynomials invariantn
under s .i

Ž .Proof. By the definition of A and the commutation relations 2.8 ,i

ker A � 1 � ker X � qX � � ker � � 
 i .Ž . Ž . Ž .i i�1 i i i n

� 4As for R � 1, let V � span e , e as in the beginning ofi � , � , m � , � , m � , � , m
Section 5. Note that

P � V�n � , � , m
�Ž . 4� , � , m ���

is a decomposition of P into a direct sum of R -invariant subspaces.n i
Ž .By 5.2 , in V ,� , � , m

�e � qe , if � � � ,	 � , � , m � , � , m
�qe � e , if � � � ,R � 1 e �Ž . Ž . � , � , m � , � , mi � , � , m �0, if � � � .

Thus

� 4span e � e , if � � � ,� , � , m � , � , m
ker R � 1 � V �Ž .i � , � , m ½ � 4span e , if � � � ,� , � , m

implying

� 4ker R � 1 � span e � e � 
 i .Ž . Ž .�i � , � , m � , � , m n
�Ž . 4� , � , m ���

Ž .Claim 6.2. a For any positive integers i � n, j � n and m,

A � R x m � 1 � q � x m� 1 . 6.1Ž . Ž . Ž .Ž . Ž .i i j i j

Ž . � � Ž .b For any polynomial f � Z x , . . . , x , the polynomial A � R f1 n i i
is i-symmetric and divisible by 1 � q:

� �A � R f � 
 i � 1 � q � Z x , . . . , x .Ž . Ž . Ž .i i n 1 n

Ž . � 4 Ž .Proof. a If j � i, i � 1 then both sides of 6.1 equal zero. If j � i
and m  1 then

A � R x m � 1 � x � qx � � R x mŽ . Ž .Ž . Ž .Ž .i i i i�1 i i i i
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m
m m�t t�1 m� x � x � qx x x � qxŽ . Ýi i�1 i i i�1 i�1

t�1

m
m� t t m�1� 1 � q x x � 1 � q � x .Ž . Ž . Ž .Ý i i�1 i i

t�0

If j � i � 1 and m  1 then, by Claim 6.1.

A � R x m � A � R x m � x m � x m � A � R �x mŽ . Ž . Ž .Ž . Ž . Ž .i i i�1 i i i i�1 i i i i

� � 1 � q � x m� 1 � 1 � q � x m� 1 .Ž . Ž .Ž . Ž .i i i i�1

Ž . k1 k 2 k nb It suffices to prove this claim for monomials x x ��� x . Any1 2 n
m Ž . � 4such monomial has the form gx , where g � 
 i , j � i, i � 1 , and mj n

Ž .Ž .is a nonnegative integer. If m � 0 then A � R g � 0. Otherwise, iti i
Ž . Ž . Ž .follows from 3.3 , 5.4 , and 6.1 that

A � R gx m � g A � R x m � 1 � q g� x m� 1 , 6.2Ž . Ž . Ž . Ž .Ž . Ž . Ž .i i j i i j i j

as claimed.

Ž .LEMMA 6.3. 
 i is spanned, as a 
 -module, by the Schubert polyno-n n
Ž . Ž .mials � with l ws � l w . The same holds when the ground field F isw i

replaced by Z.

Ž . Ž . Ž .Proof. First of all, if l ws � l w then, by Proposition 2.3, s � �i i w
Ž .� and therefore � � 
 i .w w n

By the same proposition, for any w � Sn

1 � s � � span � � l zs � l z � l w in P �I ,� 4Ž . Ž . Ž . Ž . Ž . Ž .i w z i n n

and therefore, for any f � P �I ,n n

1 � s f � span � � l zs � l z in P �I .� 4Ž . Ž . Ž . Ž . Ž .i z i n n

Ž . Ž .Ž . Ž .If f � 
 i �I then 1 � s f � 2 f , so that 
 i �I is spanned, as an n i n n
vector space, by the above Schubert polynomials. Since I is the ideal of Pn n
generated by the homogeneous elements in 
 of positive degree, an

Ž .standard argument yields the claimed result for 
 i as a 
 -module.n n
The result for Z instead of F follows from the fact that Schubert

polynomials also form a ‘‘basis’’ for polynomials with integer coefficients.
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The following proposition provides a description of the action of
Ž Ž ..� HH q on Schubert polynomials.˜2 n

PROPOSITION 6.4. For each 1 � i � n and w � S ,n

	� , if l ws � l w ,Ž . Ž .w i
�q� � Ý 1 � q b � c � ,Ž .� T � �Ž . Ž .˜ w lŽ z s .� lŽ z . w , z w , z z2 i w i� if l ws � l w ,Ž . Ž .i

� 4where b � Z, c � �1, 0, 1 , and the sum extends o�er all permutationsw , z w , z
Ž . Ž . Ž .z � S with l zs � l z � l w .n i

Ž . Ž . Ž .Proof. Since � � 
 i for w � S with l ws � l w , Claim 6.1w n n i
Ž .Ž .implies that � T � � � for these w.2 i w w

Homogeneous components of P are invariant under the action of eachn
R , 1 � i � n. It follows that the homogeneous components of the coin-i

Ž Ž .. Ž .Ž .variant algebra are invariant under � HH q , so that each � T � is˜ ˜2 n 2 i w
Ž .spanned by Schubert polynomials of degree l w . Combining this fact with

Ž .Claim 6.2 b and Lemma 6.3 shows that for any 1 � i � n and w � Sn

� T � � T � � 1 � q d � , 6.3Ž . Ž . Ž . Ž . Ž .Ž .˜ ˜ Ý2 i 1 i w w , z z
Ž . Ž . Ž .l zs �l z �l wi

where d � Z, and the sum extends over all permutations z � S withw , z n
Ž . Ž . Ž .l zs � l z � l w .i

Ž . Ž . Ž . Ž .Combining 6.3 with 4.1 gives, for any w � S with l ws � l w ,n i

� T � � � T � � � T � � T �Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .˜ ˜ ˜ ˜2 i w 1 i w 2 i 1 i w

� �q� � a �Ýw w , z z
Ž . Ž . Ž .l zs �l z �l wi

� 1 � q d �Ž . Ý w , z z
Ž . Ž . Ž .l zs �l z �l wi

� �q� � 1 � q d � a � ,Ž .Ýw w , z w , z z
Ž . Ž . Ž .l zs �l z �l wi

� 4where a � 0, 	 1, 	 q , d � Z, and the sum extends over all z � Sw , z w , z n
Ž . Ž . Ž .with l zs � l z � l w ,i

Substituting

d , if a � 	qw , z w , zb �w , z ½ d � a �q , if a � 	qw , z w , z w , z
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and

a , if a � 	qw , z w , zc �w , z ½ a �q , if a � 	qw , z w , z

completes the proof.

Imitating the proof of Theorem 4.1 we obtain

THEOREM 6.5.

� k T � weight � w ,Ž .Ž . Ý2 � q
Ž .l w �k

�Ž .where weight w are the same weights as in Theorem 4.1.q

ŽCombining Theorems 6.5 and 4.1 together with Ram’s result Theorem
.2.1 shows that

Ž .THEOREM 6.6. The representation of HH q induced by the q-commutatorsn
A on the homogeneous components of the coin�ariant algebra and thei
representation induced by the transposed randomized operators R on thesei
components are equi�alent.

Problem 6.7. Calculate the coefficients b in Proposition 6.4.w , z

� 4We conjecture that b � �1, 0, 1 .w , z

7. FINAL REMARKS

7.1. Related Families of Operators

Consider the following family of q-commutators:

� �B � � � , X 1 � i � n .Ž .qi i i�1

This family is closely related to the q-commutators A .i

Fact 7.1. The operators B satisfy the Hecke algebra relationsi
Ž . Ž .2.1 � 2.3 .

PROPOSITION 7.2. Let D be operators on the polynomial ring P of thei n
Ž .form c � P X , X � , 1 � i � n, where P are polynomials of two �ari-i i i i�1 i i

ables, and c are constants. Ifi

Ž . Ž . Ž . Ž .1 D satisfy the Hecke algebra relations 2.1 � 2.3 with q � 0, �1 ,i

Ž . Ž .2 D are degree preser�ing as operators on P ,i n
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Ž .3 
 , the subring of symmetric functions, is pointwise in�ariant undern
all D , 1 � i � n,i

Ž . Ž .then, for n � 2, either D � A  i or D � B  i .i i i i

Proposition 7.2 is related to a general theorem of Lascoux and
Schutzenberger.¨

� �LS THEOREM LS, Theorem 1 . Let x , x , x be �ariables, and let s1 2 3 i
i � 1, 2 be the simple transpositions as abo�e. Let D , i � 1, 2 be lineari

Ž . Žoperators on the ring of rational functions C x , x , x considered as a1 2 3
.�ector space o�er C defined by

D � P � Q s ,i i i i

Ž .where P , Q � C x , x are rational functions of the corresponding pair ofi i i i�1
�ariables.

Assume that:

Ž .1 D D D � D D D ;1 2 1 2 1 2

Ž .2 D is in�ertible and P � 0.1 1

� �Then D and D preser�e the ring of polynomials C x , x , x if and only if1 2 1 2 3
there exist � , � , � , � , � � C, so that � � �� � �� � 0, � � 0, � � �, and

�1P x , x � x � x � x � � � x � � andŽ . Ž . Ž . Ž .i i i�1 i i�1 i i�1

Q � � � P .i i

2 Ž .Also, in that case, both D and D satisfy D � � D � � � � � .1 2 i i

Obviously, the initial conditions in this theorem are quite different from
those of Proposition 7.2; but the two families A and B are commoni i

Žsolutions of both problems for the LS theorem in the special case
.� � 1 � q, � � 1 . Note that for � � 1 � q, � � �q one gets two other

families of the q-commutator type, for which 
 is not pointwise invari-n
ant.

It should be mentioned that the family R of Sections 5 and 6 is noti
Ž .obtainable from the LS theorem or from Proposition 7.2 .

7.2. Connections with Kazhdan�Lusztig Theory

Theorem 3.3 has a remarkable analogue in Kazhdan�Lusztig theory.
� �In their seminal paper KL Kazhdan and Lusztig constructed a canonical

basis to Hecke algebra representations. A basic theorem in this theory
describes the action of the generators T on the canonical basiss
elements C .w
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� Ž . Ž .�THEOREM 7.3 KL, 2.3a � 2.3c . Let W be a Coxeter group, s a Coxeter
generator of W, w � W, and C the corresponding Kazhdan�Lusztig basisw
element. Then

�C , if l sw � l w ,Ž . Ž .w
T C �Ž .s w 1�2½ qC � q Ý a C , if l sw � l w ,Ž . Ž .w lŽ s z .� lŽ z .� lŽw . w , z z

where the coefficients a � Z are independent of q.w , z

This analogy leads to similar character formulas in the two theories; see
Theorems 2.2 and 4.1. This surprising phenomenon seems to warrant
further study.

7.3. Probabilistic Aspects

The parameter q in the definition of the Hecke algebra may be
interpreted as a transition probability. This gives a natural interpretation to
the appearance of the coefficients q and 1 � q in the basic Hecke relation
Ž .2.3 . This observation was fundamental to the definition of the random-
ized action in Section 5. The operators defined there interpolate between

Ž . Ž .two well-studied extreme cases: sorting q � 0 and mixing q � 1 by
means of adjacent transpositions. They also form an interesting link
between algebra and physics-motivated optimization.

7.4. Other Weyl Groups

Extension of all the above to other Weyl and Coxeter groups is highly
desirable. Preliminary computations indicate that this may not be straight-
forward.
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