PROBLEM SET 2

The problems worth 10 points each.

Problem 1 For $n \geq 2$ and $k \geq 1$, calculate the number of regions of the generalized Shi arrangement \mathcal{A}_{nk} in \mathbb{R}^n that has the following hyperplanes

 $x_i - x_j = -k + 1, -k + 2, \dots, 0, 1, \dots, k,$ for $1 \le i < j \le n$.

(For example, \mathcal{A}_{n1} is the usual Shi arrangement of type A.)

Problem 2 Calculate the number of regions of the Shi arrangement $\{(\alpha, x) = 0, 1 \mid \alpha \in \Phi^+\}$ for a root system Φ of type B_n , C_n , and D_n .

Find a generalization of parking functions for types B or C and find a natural correspondence between these B- or C-parking functions and regions of the Shi arrangement.

Problem 3 A semiorder P is a poset such that there exists a collection of intervals I_x , for $x \in P$, of length 1 such that x > y iff all points in I_x are greater than all points of I_y . Prove that a poset P is a semiorder if and only if P does not have induced subposets on 4 elements a, b, c, d of the following 2 types: $\{a < b \text{ and } c < d, \text{ all other pairs of elements are incomparable}\},$ $\{a < b < c, \text{ and } d \text{ is incomparable with } a, b, c\}.$

Problem 4 Let $I_n(q) := \sum_{(a_1,\ldots,a_n)} q^{\binom{n}{2}-a_1-\cdots-a_n}$, where the sum is over parking functions (a_1,\ldots,a_n) . Give combinatorial interpretations (with proofs) for the following values of this polynomial $I_n(-1), I_n(0), I_n(1), I_n(2)$.

Define a k-parking function (a_1, \ldots, a_n) as a sequence of positive integers whose increasing rearrangements $c_1 \leq c_2 \leq \cdots \leq c_n$ satisfies $c_1 \leq 1, c_2 \leq 1 + k, c_3 \leq 1+2k, c_4 \leq 1+3k$, etc. Let $I_{n,k}(q) := \sum_{(a_1,\ldots,a_n)} q^{((n-1)k+2)n/2-a_1-\cdots-a_n}$, where the sum is over k-parking functions (a_1,\ldots,a_n) . Extend the results from the first part to the polynomials $I_{n,k}(q)$.

Problem 5 Describe all connected simple graphs G (without multiple edges) such that the vertices v of G can be labelled by positive integer numbers c_v such that:

- 1. For any vertex v we have $c_v = \frac{1}{2} \sum_{u \sim v} c_u$, where $u \sim v$ means that the vertices u and v and connected by an edge.
- 2. There exists at least one vertex v such that $c_v = 1$.

Show that, for a Weyl group W of types A_n , D_n , E_6 , E_7 , E_8 , one can attach an additional vertex to the Dynkin diagram of W so that the resulting graph satisfies the above conditions.

Problem 6 Let W be a Weyl group W of types A_n , D_n , E_6 , E_7 , E_8 and let G be its Dynkin diagram with an additional vertex attached and vertices labelled by positive integer numbers c_0, c_1, \ldots, c_r as in the previous problem.

Show that the order of the Weyl group W equals $|W| = r! f c_0 c_1 \cdots c_r$, where $f = \#\{i \mid c_i = 1\}$.

Problem 7 Let W be the Weyl group of type B_n or D_n . Calculate the number of decompositions $c = r_1 r_2 \cdots r_l$ of a Coxeter element c in W into a minimal number of reflections r_1, \ldots, r_l . (The r_i are not necessarily simple reflections.)

Problem 8 Let W be the Weyl group of types A_n , B_n , C_n , or D_n . Find bijections between the following sets:

- 1. Generalized Dyck paths: Order-ideals in the root poset.
- 2. Generalized non-crossing partitions: Elements below a Coxeter element c in the \prec order on W. Here \prec is the partial order on W such that $v \prec w$ iff w = uv and L(w) = L(u) + L(v), where L(w) is the minimal number of reflections (not necessarily simple) needed to express w.
- 3. W-orbits in Q/(h+1)Q, where Q is the lattice generated by the roots and h is the Coxeter number (the order of the Coxeter element).

Find an expression for the number of such objects (together with a combinatorial proof).

Problem 9 Let W be a Weyl group. Let us subdivide the vertices of the corresponding Dynkin diagram into two disjoint subsets I_1 and I_2 so that a vertex in I_1 is connected only with vertices in I_2 . (In other words, color this bipartite graph into two colors.) The Springer number S(W) is defined

as the number of elements w in W whose descent set Des(w) equals to I_1 . (This is a generalization of numbers of alternating permutations.)

(A) Find the exponential generating functions for Springer numbers of types A, B, and D.

(B) For any subset I of vertices of the Dynkin diagram, show that the number of $w \in W$ such that Des(w) = I is less than or equal to the Springer number S(W).

Problem 10 For a root system Φ with $N = |\Phi^+|$ positive roots, let C be the $N \times N$ -matrix whose entries are $c_{\alpha,\beta} = (\alpha, \beta^{\vee})$, for $\alpha, \beta \in \Phi^+$. (The Cartan matrix of Φ is a certain $r \times r$ -submatrix of C.) Show that the permanent of the matrix C is equal to

$$per(C) = |W| \prod_{\alpha \in \Phi^+} ht(\alpha) = \prod_{\alpha \in \Phi^+} (1 + ht(\alpha))$$

where the height of α is $ht(\alpha) = c_1 + \cdots + c_r$ for $\alpha = c_1\alpha_1 + \cdots + c_r\alpha_r$.

You can first try to prove this formula for type A, then for B, C, D.

Problem 11 Let R be a regular (n+2)-gon with vertices labelled by $1, \ldots, n+2$. For a triangulation T of R, let $v_T = (v_1, \ldots, v_{n+2})$ be the (n+2)-vector where v_i is the total area of triangles containing the vertex i. Show that the polytope $conv(v_T)$ is a polytopal realization of the assocahedron.

Problem 12 For a simple polytope P, let G_P be the 1-skeleton of P and Δ_P be the corresponding simplicial complex. Show that the Hilbert series (the dimensions of the graded components) $H_T^*(G_P)$ coincides with the Hilbert series of the Stanley-Reisner ring $\mathbb{R}[\Delta_P]$.