18.318 - Spring 2010 - Problem Set 2

Problem 1. (a) Let $K_{m, n}$ be the complete bipartite graph with vertices $1, \ldots, m$ (the left part) and $m+1, \ldots, m+n$ (the right part). For a spanning tree T of $K_{m, n}$, let Δ_{T} be the convex hull of the points $e_{i}+e_{j} \in \mathbb{R}^{m+n}$ for all edges (i, j) of T. A tree T is called noncrossing if it does not have a pair of edges (i, j) and (k, l) with $i<k<j<l$.

Show that the collection of simplices Δ_{T}, where T ranges over all noncrossing spanning trees of $K_{m, n}$, forms a triangulation of the product of two simplices $\Delta^{m-1} \times \Delta^{n-1}$.
(b) Construct a triangulation of $\Delta^{2} \times \Delta^{2}$ which cannot be obtained from the triangulation constructed in part (a) by a permutation the coordinates in \mathbb{R}^{m+n}.
(c) Describe all equivalence classes of triangulations of $\Delta^{2} \times \Delta^{2}$ under permutations of the coordinates.

Problem 2. Let $\rho=\left(\rho_{1}, \ldots, \rho_{n}\right)$ be a weakly increasing sequence of positive integers. A ρ-parking function is a sequence $\left(a_{1}, \ldots, a_{n}\right)$ of positive integers such that their increasing rearrangement $c_{1} \leq \cdots \leq c_{n}$ satisfies $c_{i} \leq \rho_{i}$ for $i=1, \ldots, n$.
(a) Calculate the number of ρ-parking functions in the case when ρ_{i} is a linear function of i, that is $\rho=(l, l+k, l+2 k, \ldots, l+(n-1) k)$.
(b) Let $I_{\rho}(q)=\sum_{a} q^{\sum\left(\rho_{i}-a_{i}\right)}$, where the sum is over all ρ-parking functions. Find a combinatorial interpretation of the value $I_{\rho}(-1)$ and prove it.

Problem 3. For positive integers n and k, the generalized Shi arrangement is the arrangement hyperplanes $\left\{x_{i}-x_{j}=r\right\}$ for $1 \leq i<j \leq n, r=$ $-k+1,-k+2, \ldots, k$.

Prove that the number of regions of the generalized Shi arrangement equals the number of ρ-parking functions for $\rho=(1,1+k, 1+2 k, \ldots, 1+$ $(n-1) k)$.

Problem 4. Fix positive integers n, k. Let S be the set of complex numbers $S=\{0\} \cup\left\{j \cdot \xi^{r} \mid j=1, \ldots, n ; r=0, \ldots, k-1\right\}$, where $\xi=e^{2 \pi \sqrt{-1} / n}$ is the primitive k-th root of 1 . The cyclic group $\mathbb{Z} / k \mathbb{Z}$ acts on S by multiplication by ξ. A tree T on $k n+1$ vertices labelled by the set S is called k-symmetric if it is invariant under this action of the cyclic group.

Prove that the number of k-symmetric trees on $n k+1$ vertices equals the number of ρ-parking functions for $\rho=(1,1+k, 1+2 k, \ldots, 1+(n-1) k)$.

Problem 5. For $X=\left\{a_{1}, \ldots, a_{m}\right\}$ where a_{i} 's span \mathbb{R}^{d}, let I_{X} be the ideal in $\mathbb{C}\left[x_{1}, \ldots, x_{d}\right]$ generated by the products of linear forms $\prod_{a \in Y} a(x)$ for all long subsets $Y \subset X$, and let P_{X} be the subspace of $\mathbb{C}\left[x_{1}, \ldots, x_{d}\right]$ spanned by the products $\prod_{a \in Z} a(x)$ for all short subsets $Z \subset X$. (A subset $Y \subset X$ is called long (resp., short) if $X \backslash Y$ does not span (resp., spans) \mathbb{R}^{d}.

Prove that $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]=I_{X} \oplus P_{X}$. (In class we proved $1 / 2$ of this claim.)

Problem 6. Let $S_{x}, x \in P$, be a finite collection of subsets in some set A. Everybody knows the inclusion-exclusion formula:

$$
\left|A \backslash \bigcup S_{x}\right|=|A|-\sum\left|S_{x}\right|+\sum\left|S_{x} \cap S_{y}\right|-\cdots
$$

Suppose that the labelling set P is a poset, and the following condition holds: for any $x, y \in P$ there exists $z \in P$ such that $z \geq_{P} x, z \geq_{P} y$ and $S_{x} \cap S_{y} \subseteq S_{z}$. Show that in this case one can reduce the right-hand side of the inclusion-exclusion formula to a sum over strictly increasing chains in P :

$$
\left|A \backslash \bigcup S_{x}\right|=|A|-\sum_{x}\left|S_{x}\right|+\sum_{x<y}\left|S_{x} \cap S_{y}\right|-\sum_{x<y<z}\left|S_{x} \cap S_{y} \cap S_{z}\right|+\cdots
$$

Problem 7. Fix positive integers k, l, n. Let Π be the Pitman-Stanley polytope $\Pi=\left\{x \in \mathbb{R}^{n}| | x_{i} \geq 0 ; x_{1}+\cdots+x_{i} \leq \rho_{i}, i=1, \ldots, n\right\}$ with $\rho_{i}=l+(i-1) k$.

Show that the Ehrhart polynomial of Π equals

$$
i(\Pi, t):=\#\left\{t \Pi \cap \mathbb{Z}^{n}\right\}=\frac{1}{n!}(t l+1) \prod_{i=2}^{n}(t(l+n k)+i)
$$

Problem 8. Let $H_{n}(r)$ be the number of "magic squares", which are $n \times n$ matrices with nonnegative integer entries such that all row sums and all column sums are equal to r. Prove that $H_{n}(r)$ is a polynomial in r that has the following properties:

$$
H_{n}(-1)=H_{n}(-2)=\cdots=H_{n}(-n+1)=0
$$

and $H_{n}(-n-r)=(-1)^{n-1} H_{n}(r)$.
... MORE PROBLEMS ...
Problem 9. Let $X=\left\{a_{1}, \ldots, a_{m}\right\}$ where a_{i} 's span \mathbb{R}^{d}. Let I be the ideal in the ring of Laurent polynomials $\mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{d}^{ \pm 1}\right]$ generated by $\prod_{a \in Y}\left(1-x^{a}\right)$ for all cocircuits $Y \subset X$. Let B be the subspace in $\mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{d}^{ \pm 1}\right]$ spanned by monomials x^{b} for all $b \in b(u)$, where $b(u):=\left(-Z_{X}+u\right) \cap \mathbb{Z}^{d}$ for some fixed generic vector $u \in \mathbb{R}^{d}$, and Z_{X} is the zonotope $Z_{X}:=\sum_{a \in X}[0, a]$.

Show that $\mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{d}^{ \pm 1}\right]=I \oplus B$.
Problem 10. Prove quasi-polynomiality and reciprocity of the Ehrhart polynomial $i(P, t)$ for a rational polytope P. (You may use the results about vector partition functions proved in class.)

