MIT - 18.312 - SPRING 2013

PROBLEM SET 2 (due on Tuesday 04/09/2013)

Solve as many problems as you like. Hand in at least 5 problems.

Problem 1. (a) Prove that the (signless) Stirling numbers of the first kind ¢(n, k)
can be computed using the Stirling triangle of the first kind given by the recurrence
relation:
cn+1,k) =ne(n, k) + c(n, k- 1).
(b) Prove that the Stirling numbers of the second kind S(n, k) can be computed
using the Stirling triangle of the second kind given by the recurrence relation:
Sn+1,k)=kS(n,k)+ S(n,k—1).

Problem 2. The Bell number B(n) is the number of all set-partitions of [n]. Prove
that the Bell numbers can be calculated using the following Bell triangle:
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In this triangle, the last entry in a row equals the first entry of the next row,
and each entry is the sum of two entries to the left (West) and to the North-West
of it. (For example, 27 = 20 4+ 7.) The Bell numbers 1, 2, 5, 15, 52, ...appear on
the main diagonal.

Can you find a combinatorial interpretation of the other entries of this triangle?

Problem 3. A set-partition 7 of [n] is non-crossing if there are no numbers ¢ <
j < k <l such that i, k are in one block of m, and j,! are in another block of 7.
Prove bijectively that the number is non-crossing set-partitions of [n] equals the
Catalan number C,,.

Problem 4. In class we described the following procedure. Pick n integer numbers
between 0 and m — 1, and write them in the first row of an m x n matrix. Fill in
the other entries of the matrix by cyclically shifting the first row modulo m, that
is, if @ is an entry of the first row, then below a we should write a+1,a+2,...,m—
1,0,1,...,a — 1. Find the median entry in each row of this matrix. Let S be the
sum of the median entries. Express S in terms of m and n, and prove this formula.

Problem 5. Check (using the axioms of lattices) that the structure of a lattice is
equivalent to a poset P such that, for any two elements x,y € P, there is a unique
minimal element u such that v > z and u > y, and there is a unique maximal
element v such that v < x and v < y.

Problem 6. Prove Minsky’s theorem that says that in any finite poset P the
maximal number of elements in a chain equals the minimal number of anti-chains
needed to cover all elements of P.

Problem 7. Find an example of graded, rank symmetric, rank unimodular poset
that has Sperner property, but does not have a symmetric chain decomposition

(SCD).



Problem 8. Prove that the lattice J(J([2] x [n])) is rank unimodular.

Problem 9. In class we constructed the Fibonacci lattice F. Since F is a differential

poset, we have
oo ()=l

z element of rank n

where f, is the number of saturated chains in F from 0 to x.

(a) Prove that F is a lattice.

(b) Find a non-inductive combinatorial construction for F. In other words, label
elements of F by some kind of combinatorial objects and describe the covering
relation in terms of these objects.

(¢) Find an analog of Schensted correspondence for the Fibonacci lattice, which
would provide a combinatorial proof of the above identity.

Problem 10. Let P be a differential poset (such as the Young lattice Y or the
Fibonacci lattice F). Show that the number of all paths of length 2n from 0 to 0

that go along the edges of the Hasse diagram of P (up or down in any order) equals
2n—1=02n—-1)2n—-3)---3-1.

Problem 11. A perfect matching on [2n] is a graph with vertices labeled 1,2, ...,2n
such that each vertex belongs to exactly one edge.

(a) Show that the number of perfect matchings on [2n] equals (2n — 1)!1.

(b) Find a bijection between paths in the Young lattice Y as in the previous
problem and perfect matchings on [2n].

Problem 12. Let aq,...,a; and by,...,b; be two sequences of positive integers
such that a; +---+ap =by + -+ b, = n.

Let A be the Young diagram such that the path from the bottom left corner to
the upper right corner of A has the form: a; right steps, b; up steps, as right steps,
bs up steps, etc.

(a) Prove that the number of paths in a differential poset P that start and end
at 0 and have the following form: a; steps up, by steps down, as steps up, ba steps
down, etc., equals the number of ways to place n non-attacking rook of the board
of shape A.

(b) For the Young lattice Y, construct a bijection between paths and rook place-
ments as in part (a).

(c) Find an explicit formula for the number of rook placements as in part (a).

Problem 13. Let p be a prime number, and let f(z) € F,[z] be an irreducible
polynomial of degree n over the finite field F,. One can reduce any monomial z*
modulo the ideal (f(z)) and write it as a polynomial of degree n — 1. Let d; be the
leading coefficient (the coefficient of 2"~ !) in the reduction of x.

Prove that do,di1,ds,...,dpn_1 is a (base p) de Bruijn sequence, that is, its
cyclically consecutive n-tuples contain all p™ p-ary words of length n.

You can use the following facts about the finite field F,, where ¢ = p™. Let
a € Fy be a root of the polynomial f(x). Then

(1) Fy={co+cia+ - +cp1a" ¢ €F,}, and

(2) F,\ {0} ={1,a,0?, ..., 072}

Problem 14. Construct a base p = 3 de Bruijn sequence of length 27.



3

Problem 15. Prove that the binary word obtained by concatenation of all Lyndon
words whose length divides n written in the lexicographical order is a binary de
Bruijn sequence of length 2.

Problem 16. (a) Construct a bijection between partitions of n with odd parts and
partitions of n with distinct parts.

(b) Generalize (a) as follows. Prove bijectively that, for any positive integers n
and k, the number of partitions of n into parts not divisible by k£ + 1 equals the
number of partitions of n such that parts can be repeated at most k times.

Problem 17. Prove that the number of self-conjugate partitions of n (that is,
partitions such that A’ = \) equals the number of partitions of n with distinct and
odd parts.

Problem 18. Prove the following identity for the g-binomial coefficients

m+n _min(m’n) 2 [m] [n
[ m L kzzo e {k}q{k}q

Problem 19. For a partition A, let £(\) be the total number of parts in A, and
d(\) be the number of distinct parts in A. For example, for A = (5,5,5,4,2,2,1),
¢(A\) =17, and d(\) = 4. Let
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(a) Prove that A = B.
(b) Prove that B = C.
(c) Prove that A = C' combinatorially using the involution principle.

Problem 20. Consider the directed graph given by the m x n grid where all edges
are directed to the right and up. This graph has a unique source A (the lower left
corner) and a unique sink B (the upper right corner). An integer N-flow is a way
to assign non-negative integer numbers to the edges of the graph (flows over the
edges) such that for each vertex, excepts A and B, the total in-flow to the vertex
equals the total out-flow from the vertex; the out-flow from the source A equals N,
and the in-flow to the sink B equals N.

(a) Show that the number of N-flows for the grid graph is a polynomial in N.
What is the degree of this polynomial?

(b) Find the leading coefficient of this polynomials.

You can start solving this problem by considering m x n grids for small values
of m or n.



